Matches in SemOpenAlex for { <https://semopenalex.org/work/W1779218963> ?p ?o ?g. }
- W1779218963 abstract "In this paper, we propose a time-frequency analysis method to obtain instantaneous frequencies and the corresponding decomposition by solving an optimization problem. In this optimization problem, the basis to decompose the signal is not known. Instead, it is adapted to the signal and is determined as part of the optimization problem. In this sense, this optimization problem can be seen as a dictionary learning problem. This dictionary learning problem is solved by using the Augmented Lagrangian Multiplier method (ALM) iteratively. We further accelerate the convergence of the ALM method in each iteration by using the fast wavelet transform. We apply our method to decompose several signals, including signals with poor scale separation, signals with outliers and polluted by noise and a real signal. The results show that this method can give accurate recovery of both the instantaneous frequencies and the intrinsic mode functions." @default.
- W1779218963 created "2016-06-24" @default.
- W1779218963 creator A5077724126 @default.
- W1779218963 creator A5079936107 @default.
- W1779218963 date "2013-09-05" @default.
- W1779218963 modified "2023-09-27" @default.
- W1779218963 title "Sparse Time-Frequency decomposition by dictionary learning" @default.
- W1779218963 cites W1669104078 @default.
- W1779218963 cites W1976709621 @default.
- W1779218963 cites W1986931325 @default.
- W1779218963 cites W1988500921 @default.
- W1779218963 cites W2005876975 @default.
- W1779218963 cites W2007221293 @default.
- W1779218963 cites W2019900743 @default.
- W1779218963 cites W2090218979 @default.
- W1779218963 cites W2110983594 @default.
- W1779218963 cites W2120390927 @default.
- W1779218963 cites W2129638195 @default.
- W1779218963 cites W2140499889 @default.
- W1779218963 cites W2142058898 @default.
- W1779218963 cites W2151693816 @default.
- W1779218963 cites W2160547390 @default.
- W1779218963 cites W2164452299 @default.
- W1779218963 cites W2167188281 @default.
- W1779218963 cites W2296616510 @default.
- W1779218963 doi "https://doi.org/10.48550/arxiv.1311.1163" @default.
- W1779218963 hasPublicationYear "2013" @default.
- W1779218963 type Work @default.
- W1779218963 sameAs 1779218963 @default.
- W1779218963 citedByCount "1" @default.
- W1779218963 countsByYear W17792189632015 @default.
- W1779218963 crossrefType "posted-content" @default.
- W1779218963 hasAuthorship W1779218963A5077724126 @default.
- W1779218963 hasAuthorship W1779218963A5079936107 @default.
- W1779218963 hasBestOaLocation W17792189631 @default.
- W1779218963 hasConcept C104267543 @default.
- W1779218963 hasConcept C11413529 @default.
- W1779218963 hasConcept C124681953 @default.
- W1779218963 hasConcept C124851039 @default.
- W1779218963 hasConcept C126255220 @default.
- W1779218963 hasConcept C137798554 @default.
- W1779218963 hasConcept C137836250 @default.
- W1779218963 hasConcept C142433447 @default.
- W1779218963 hasConcept C150452318 @default.
- W1779218963 hasConcept C154945302 @default.
- W1779218963 hasConcept C156872377 @default.
- W1779218963 hasConcept C162324750 @default.
- W1779218963 hasConcept C18903297 @default.
- W1779218963 hasConcept C199360897 @default.
- W1779218963 hasConcept C2777303404 @default.
- W1779218963 hasConcept C2779843651 @default.
- W1779218963 hasConcept C33923547 @default.
- W1779218963 hasConcept C41008148 @default.
- W1779218963 hasConcept C47432892 @default.
- W1779218963 hasConcept C50522688 @default.
- W1779218963 hasConcept C554190296 @default.
- W1779218963 hasConcept C76155785 @default.
- W1779218963 hasConcept C79337645 @default.
- W1779218963 hasConcept C84462506 @default.
- W1779218963 hasConcept C86803240 @default.
- W1779218963 hasConcept C9390403 @default.
- W1779218963 hasConcept C99217422 @default.
- W1779218963 hasConceptScore W1779218963C104267543 @default.
- W1779218963 hasConceptScore W1779218963C11413529 @default.
- W1779218963 hasConceptScore W1779218963C124681953 @default.
- W1779218963 hasConceptScore W1779218963C124851039 @default.
- W1779218963 hasConceptScore W1779218963C126255220 @default.
- W1779218963 hasConceptScore W1779218963C137798554 @default.
- W1779218963 hasConceptScore W1779218963C137836250 @default.
- W1779218963 hasConceptScore W1779218963C142433447 @default.
- W1779218963 hasConceptScore W1779218963C150452318 @default.
- W1779218963 hasConceptScore W1779218963C154945302 @default.
- W1779218963 hasConceptScore W1779218963C156872377 @default.
- W1779218963 hasConceptScore W1779218963C162324750 @default.
- W1779218963 hasConceptScore W1779218963C18903297 @default.
- W1779218963 hasConceptScore W1779218963C199360897 @default.
- W1779218963 hasConceptScore W1779218963C2777303404 @default.
- W1779218963 hasConceptScore W1779218963C2779843651 @default.
- W1779218963 hasConceptScore W1779218963C33923547 @default.
- W1779218963 hasConceptScore W1779218963C41008148 @default.
- W1779218963 hasConceptScore W1779218963C47432892 @default.
- W1779218963 hasConceptScore W1779218963C50522688 @default.
- W1779218963 hasConceptScore W1779218963C554190296 @default.
- W1779218963 hasConceptScore W1779218963C76155785 @default.
- W1779218963 hasConceptScore W1779218963C79337645 @default.
- W1779218963 hasConceptScore W1779218963C84462506 @default.
- W1779218963 hasConceptScore W1779218963C86803240 @default.
- W1779218963 hasConceptScore W1779218963C9390403 @default.
- W1779218963 hasConceptScore W1779218963C99217422 @default.
- W1779218963 hasLocation W17792189631 @default.
- W1779218963 hasOpenAccess W1779218963 @default.
- W1779218963 hasPrimaryLocation W17792189631 @default.
- W1779218963 hasRelatedWork W1779218963 @default.
- W1779218963 hasRelatedWork W2094896467 @default.
- W1779218963 hasRelatedWork W2247540680 @default.
- W1779218963 hasRelatedWork W2298544912 @default.
- W1779218963 hasRelatedWork W2353440875 @default.
- W1779218963 hasRelatedWork W2382555176 @default.
- W1779218963 hasRelatedWork W3126234533 @default.
- W1779218963 hasRelatedWork W4200261086 @default.