Matches in SemOpenAlex for { <https://semopenalex.org/work/W1780201395> ?p ?o ?g. }
- W1780201395 endingPage "137" @default.
- W1780201395 startingPage "1" @default.
- W1780201395 abstract "We present an abstract method for deriving decay estimates on the resolvents and semigroups of non-symmetric operators in Banach spaces in terms of estimates in another smaller reference Banach space. This applies to a class of operators writing as a regularizing part, plus a dissipative part. The core of the method is a high-order quantitative factorization argument on the resolvents and semigroups. We then apply this approach to the Fokker-Planck equation, to the kinetic Fokker- Planck equation in the torus, and to the linearized Boltzmann equation in the torus. We finally use this information on the linearized Boltzmann semi- group to study perturbative solutions for the nonlinear Boltzmann equation. We introduce a non-symmetric energy method to prove nonlinear stability in this context in $L^1_v L^infty _x (1 + |v|^k)$, $k > 2$, with sharp rate of decay in time. As a consequence of these results we obtain the first constructive proof of exponential decay, with sharp rate, towards global equilibrium for the full nonlinear Boltzmann equation for hard spheres, conditionally to some smoothness and (polynomial) moment estimates. This improves the result in [32] where polynomial rates at any order were obtained, and solves the conjecture raised in [91, 29, 86] about the optimal decay rate of the relative entropy in the H-theorem." @default.
- W1780201395 created "2016-06-24" @default.
- W1780201395 creator A5021546831 @default.
- W1780201395 creator A5052239059 @default.
- W1780201395 creator A5060848970 @default.
- W1780201395 date "2017-01-01" @default.
- W1780201395 modified "2023-09-27" @default.
- W1780201395 title "Factorization of Non-Symmetric Operators and Exponential H-Theorem" @default.
- W1780201395 cites W133732286 @default.
- W1780201395 cites W144806251 @default.
- W1780201395 cites W1495844786 @default.
- W1780201395 cites W1521302685 @default.
- W1780201395 cites W1527296550 @default.
- W1780201395 cites W1562255133 @default.
- W1780201395 cites W1574334325 @default.
- W1780201395 cites W1622588977 @default.
- W1780201395 cites W190102149 @default.
- W1780201395 cites W1964257674 @default.
- W1780201395 cites W1971609182 @default.
- W1780201395 cites W1973750289 @default.
- W1780201395 cites W1974110902 @default.
- W1780201395 cites W1975096251 @default.
- W1780201395 cites W1976350329 @default.
- W1780201395 cites W1977732367 @default.
- W1780201395 cites W1983904791 @default.
- W1780201395 cites W1988728337 @default.
- W1780201395 cites W1991491657 @default.
- W1780201395 cites W1992895152 @default.
- W1780201395 cites W1994725903 @default.
- W1780201395 cites W1994983983 @default.
- W1780201395 cites W2003268963 @default.
- W1780201395 cites W2004002285 @default.
- W1780201395 cites W2018379915 @default.
- W1780201395 cites W2019579692 @default.
- W1780201395 cites W2025252575 @default.
- W1780201395 cites W2027383644 @default.
- W1780201395 cites W2036881335 @default.
- W1780201395 cites W2037599188 @default.
- W1780201395 cites W2037850364 @default.
- W1780201395 cites W2039308004 @default.
- W1780201395 cites W2039481916 @default.
- W1780201395 cites W2043934169 @default.
- W1780201395 cites W2046055560 @default.
- W1780201395 cites W2051589524 @default.
- W1780201395 cites W2052133298 @default.
- W1780201395 cites W2055287230 @default.
- W1780201395 cites W2056518217 @default.
- W1780201395 cites W2059107770 @default.
- W1780201395 cites W2060699702 @default.
- W1780201395 cites W2061364241 @default.
- W1780201395 cites W2063530260 @default.
- W1780201395 cites W2063541189 @default.
- W1780201395 cites W2064976291 @default.
- W1780201395 cites W2071007460 @default.
- W1780201395 cites W2074870049 @default.
- W1780201395 cites W2075515041 @default.
- W1780201395 cites W2077070574 @default.
- W1780201395 cites W2080877741 @default.
- W1780201395 cites W2089096299 @default.
- W1780201395 cites W2090385746 @default.
- W1780201395 cites W2090532325 @default.
- W1780201395 cites W2101644050 @default.
- W1780201395 cites W2128072272 @default.
- W1780201395 cites W2131014366 @default.
- W1780201395 cites W2140416999 @default.
- W1780201395 cites W2149570896 @default.
- W1780201395 cites W2156855815 @default.
- W1780201395 cites W2160199745 @default.
- W1780201395 cites W2168418390 @default.
- W1780201395 cites W2170600230 @default.
- W1780201395 cites W2332691368 @default.
- W1780201395 cites W260120682 @default.
- W1780201395 cites W2613376454 @default.
- W1780201395 cites W28106125 @default.
- W1780201395 cites W2963314156 @default.
- W1780201395 cites W2964295435 @default.
- W1780201395 cites W3005465185 @default.
- W1780201395 cites W3024867789 @default.
- W1780201395 cites W3105454053 @default.
- W1780201395 cites W47858079 @default.
- W1780201395 cites W575164326 @default.
- W1780201395 cites W65571451 @default.
- W1780201395 doi "https://doi.org/10.24033/msmf.461" @default.
- W1780201395 hasPublicationYear "2017" @default.
- W1780201395 type Work @default.
- W1780201395 sameAs 1780201395 @default.
- W1780201395 citedByCount "66" @default.
- W1780201395 countsByYear W17802013952012 @default.
- W1780201395 countsByYear W17802013952013 @default.
- W1780201395 countsByYear W17802013952014 @default.
- W1780201395 countsByYear W17802013952015 @default.
- W1780201395 countsByYear W17802013952016 @default.
- W1780201395 countsByYear W17802013952017 @default.
- W1780201395 countsByYear W17802013952018 @default.
- W1780201395 countsByYear W17802013952019 @default.
- W1780201395 countsByYear W17802013952020 @default.
- W1780201395 countsByYear W17802013952021 @default.
- W1780201395 countsByYear W17802013952022 @default.