Matches in SemOpenAlex for { <https://semopenalex.org/work/W1780466103> ?p ?o ?g. }
- W1780466103 endingPage "21" @default.
- W1780466103 startingPage "13" @default.
- W1780466103 abstract "Thin films of oxide materials are widely used for various types of applications. The selection of an appropriate deposition method depends on the aimed material and application. We review here a high vacuum chemical vapour deposition (HV-CVD) method, which can be considered as a hybrid technique between classical low pressure chemical vapour deposition (LP-CVD) and molecular beam epitaxy (MBE). The principal features of HV-CVD are summarized and its main differences from other techniques analysed. The evolution of the design of precursor delivery systems from simple pressure reduction to a multiple effusion sources system has enabled the versatility of the HV-CVD method. Full wafer scale deposition, application of controlled precursor flux gradients and, based on it, combinatorial process optimisation are three main features of this development. In this contribution a comprehensive overview of oxide materials, which have been deposited by HV-CVD, and types of precursors reported in the literature is presented and analysed. Mostly metal-alkoxides, metal-beta-diketonates and metal-alkyls have been utilized in HV-CVD processes. In our laboratory the following oxide materials have been deposited on full wafer substrates in HV-CVD reactors using alkoxide precursors or derivatives: TiO2, TiO2-SiO2, Al2O3, Nb2O5, Nb2O5-HfO2, LiNbO3. The deposition chemistry and the efficiency of the process vary strongly depending on the precursor type. Due to the reduced/absent intermolecular collision events in the gas phase in HV-CVD as compared to LP-CVD, substantial differences in the physics and chemistry of the deposition processes are observed. Efficient precursor decomposition with more than 95% efficiency and deposition rates up to 500 nm/h have been observed for certain alkoxide precursors, whereas the presence of strong oxidizers (O-3 or O-2 plasma) seems to be indispensable in order to obtain an oxide deposit using beta-diketonate precursors. Here, slower deposition rates in the order of tens of nm/h are achieved. The main concern of the applicability of the technique for new oxide materials is the availability of precursors satisfying the requirements for easy precursor delivery, chemical stability in the delivery system, and efficiency of the absorption and decomposition on the substrate in high vacuum. (C) 2013 Elsevier B.V. All rights reserved." @default.
- W1780466103 created "2016-06-24" @default.
- W1780466103 creator A5011037061 @default.
- W1780466103 creator A5073584703 @default.
- W1780466103 creator A5078362113 @default.
- W1780466103 creator A5084973024 @default.
- W1780466103 date "2013-09-01" @default.
- W1780466103 modified "2023-10-09" @default.
- W1780466103 title "High vacuum chemical vapour deposition of oxides:" @default.
- W1780466103 cites W1967208580 @default.
- W1780466103 cites W1970430274 @default.
- W1780466103 cites W1972127571 @default.
- W1780466103 cites W1972528599 @default.
- W1780466103 cites W1974110646 @default.
- W1780466103 cites W1974704599 @default.
- W1780466103 cites W1976164299 @default.
- W1780466103 cites W1979757699 @default.
- W1780466103 cites W1984621821 @default.
- W1780466103 cites W1986401938 @default.
- W1780466103 cites W1991594442 @default.
- W1780466103 cites W1998776500 @default.
- W1780466103 cites W1999162440 @default.
- W1780466103 cites W2000501630 @default.
- W1780466103 cites W2006174598 @default.
- W1780466103 cites W2006184570 @default.
- W1780466103 cites W2017577248 @default.
- W1780466103 cites W2019227330 @default.
- W1780466103 cites W2024673085 @default.
- W1780466103 cites W2027060397 @default.
- W1780466103 cites W2027739606 @default.
- W1780466103 cites W2028790444 @default.
- W1780466103 cites W2030179194 @default.
- W1780466103 cites W2041696591 @default.
- W1780466103 cites W2043971006 @default.
- W1780466103 cites W2053674573 @default.
- W1780466103 cites W2060631030 @default.
- W1780466103 cites W2061568313 @default.
- W1780466103 cites W2061696302 @default.
- W1780466103 cites W2077053320 @default.
- W1780466103 cites W2081039002 @default.
- W1780466103 cites W2081565056 @default.
- W1780466103 cites W2083724316 @default.
- W1780466103 cites W2097336562 @default.
- W1780466103 cites W2105031742 @default.
- W1780466103 cites W2105622296 @default.
- W1780466103 cites W2106127608 @default.
- W1780466103 cites W2111826330 @default.
- W1780466103 cites W2128570870 @default.
- W1780466103 cites W2129311370 @default.
- W1780466103 cites W2134902842 @default.
- W1780466103 cites W2135129683 @default.
- W1780466103 cites W2138534821 @default.
- W1780466103 cites W2150316202 @default.
- W1780466103 cites W2153706288 @default.
- W1780466103 cites W2169941771 @default.
- W1780466103 cites W2464791918 @default.
- W1780466103 cites W2470836247 @default.
- W1780466103 doi "https://doi.org/10.1016/j.surfcoat.2013.06.059" @default.
- W1780466103 hasPublicationYear "2013" @default.
- W1780466103 type Work @default.
- W1780466103 sameAs 1780466103 @default.
- W1780466103 citedByCount "30" @default.
- W1780466103 countsByYear W17804661032014 @default.
- W1780466103 countsByYear W17804661032015 @default.
- W1780466103 countsByYear W17804661032016 @default.
- W1780466103 countsByYear W17804661032017 @default.
- W1780466103 countsByYear W17804661032018 @default.
- W1780466103 countsByYear W17804661032019 @default.
- W1780466103 countsByYear W17804661032021 @default.
- W1780466103 countsByYear W17804661032022 @default.
- W1780466103 countsByYear W17804661032023 @default.
- W1780466103 crossrefType "journal-article" @default.
- W1780466103 hasAuthorship W1780466103A5011037061 @default.
- W1780466103 hasAuthorship W1780466103A5073584703 @default.
- W1780466103 hasAuthorship W1780466103A5078362113 @default.
- W1780466103 hasAuthorship W1780466103A5084973024 @default.
- W1780466103 hasConcept C127413603 @default.
- W1780466103 hasConcept C151730666 @default.
- W1780466103 hasConcept C171250308 @default.
- W1780466103 hasConcept C19067145 @default.
- W1780466103 hasConcept C191897082 @default.
- W1780466103 hasConcept C192562407 @default.
- W1780466103 hasConcept C2776873873 @default.
- W1780466103 hasConcept C2816523 @default.
- W1780466103 hasConcept C42360764 @default.
- W1780466103 hasConcept C57410435 @default.
- W1780466103 hasConcept C64297162 @default.
- W1780466103 hasConcept C86803240 @default.
- W1780466103 hasConceptScore W1780466103C127413603 @default.
- W1780466103 hasConceptScore W1780466103C151730666 @default.
- W1780466103 hasConceptScore W1780466103C171250308 @default.
- W1780466103 hasConceptScore W1780466103C19067145 @default.
- W1780466103 hasConceptScore W1780466103C191897082 @default.
- W1780466103 hasConceptScore W1780466103C192562407 @default.
- W1780466103 hasConceptScore W1780466103C2776873873 @default.
- W1780466103 hasConceptScore W1780466103C2816523 @default.
- W1780466103 hasConceptScore W1780466103C42360764 @default.
- W1780466103 hasConceptScore W1780466103C57410435 @default.