Matches in SemOpenAlex for { <https://semopenalex.org/work/W1781175779> ?p ?o ?g. }
Showing items 1 to 48 of
48
with 100 items per page.
- W1781175779 endingPage "211" @default.
- W1781175779 startingPage "203" @default.
- W1781175779 abstract "Increasingly sophisticated methods and tools are needed for tracking the dynamics and detecting inherent structures inmodern day highly voluminous multi-faceted. Data scientists have long realized that tackling global challenges such as climate change, terrorism and food security cannot be contained within the frameworks and models of conventional data analysis. For example, separating noise from meaningful data in even a low-dimensional data with heavy tails and/or overlaps is quite challenging and standard non-linear approaches do not always succeed. Tracking the dynamics of multi-faceted data involving complex systems istantamount to tracking agent-based complex systems with many interacting agents. Dimensional-reduction methods are commonly used to try and capture structures inherent in data but they do not generally lead to optimal solutions mainly because their optimisation functions and theoretical methods typically rely on special structures. We propose a parameter leveraging method for unsupervised big data modelling. The method searches for structures in data and creates a series of sub-structures which are subsequently merged or split. The strategy is to present the algorithm with a set of periodic data as one complex system. It then uses the patterns in the sub-structures to determine the overall behaviour of the complex system. Applications on solar magnetic activity cycles and seismic data show that the proposed method out-performs conventional unsupervised methods. We illustrate how the method can be extendedto supervised modelling." @default.
- W1781175779 created "2016-06-24" @default.
- W1781175779 creator A5052137169 @default.
- W1781175779 creator A5075130761 @default.
- W1781175779 date "2016-07-01" @default.
- W1781175779 modified "2023-10-18" @default.
- W1781175779 title "A Parameter Leveraging Method for Unsupervised Big Data Modelling" @default.
- W1781175779 doi "https://doi.org/10.18576/jsap/050201" @default.
- W1781175779 hasPublicationYear "2016" @default.
- W1781175779 type Work @default.
- W1781175779 sameAs 1781175779 @default.
- W1781175779 citedByCount "0" @default.
- W1781175779 crossrefType "journal-article" @default.
- W1781175779 hasAuthorship W1781175779A5052137169 @default.
- W1781175779 hasAuthorship W1781175779A5075130761 @default.
- W1781175779 hasConcept C105795698 @default.
- W1781175779 hasConcept C124101348 @default.
- W1781175779 hasConcept C154945302 @default.
- W1781175779 hasConcept C33923547 @default.
- W1781175779 hasConcept C41008148 @default.
- W1781175779 hasConcept C75684735 @default.
- W1781175779 hasConceptScore W1781175779C105795698 @default.
- W1781175779 hasConceptScore W1781175779C124101348 @default.
- W1781175779 hasConceptScore W1781175779C154945302 @default.
- W1781175779 hasConceptScore W1781175779C33923547 @default.
- W1781175779 hasConceptScore W1781175779C41008148 @default.
- W1781175779 hasConceptScore W1781175779C75684735 @default.
- W1781175779 hasIssue "2" @default.
- W1781175779 hasLocation W17811757791 @default.
- W1781175779 hasOpenAccess W1781175779 @default.
- W1781175779 hasPrimaryLocation W17811757791 @default.
- W1781175779 hasRelatedWork W1965696806 @default.
- W1781175779 hasRelatedWork W2130579308 @default.
- W1781175779 hasRelatedWork W2348097614 @default.
- W1781175779 hasRelatedWork W2368437561 @default.
- W1781175779 hasRelatedWork W2901726430 @default.
- W1781175779 hasRelatedWork W2978687348 @default.
- W1781175779 hasRelatedWork W3014300295 @default.
- W1781175779 hasRelatedWork W3107474891 @default.
- W1781175779 hasRelatedWork W4224943336 @default.
- W1781175779 hasRelatedWork W786186891 @default.
- W1781175779 hasVolume "5" @default.
- W1781175779 isParatext "false" @default.
- W1781175779 isRetracted "false" @default.
- W1781175779 magId "1781175779" @default.
- W1781175779 workType "article" @default.