Matches in SemOpenAlex for { <https://semopenalex.org/work/W1782271619> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W1782271619 endingPage "95" @default.
- W1782271619 startingPage "83" @default.
- W1782271619 abstract "In order to assure and to improve the quality of service, call center operators need to automatically identify the problematic calls in the mass of information flowing through the call center. Our method to select and rank those critical conversations uses linguistic text mining to detect sentiment markers on French automatic speech transcripts. The markers’ weight and orientation are used to calculate the semantic orientation of the speech turns. The course of a conversation can then be graphically represented with positive and negative curves. We have established and evaluated on a manually annotated corpus three heuristics for the automatic selection of problematic conversations. Two proved to be very useful and complementary for the retrieval of conversations having segments with anger and tension. Their precision is high enough for use in real world systems and the ranking evaluated by mean precision follows the usual relevance behavior of a search engine." @default.
- W1782271619 created "2016-06-24" @default.
- W1782271619 creator A5035300573 @default.
- W1782271619 creator A5078409829 @default.
- W1782271619 date "2013-01-01" @default.
- W1782271619 modified "2023-09-27" @default.
- W1782271619 title "Mining Automatic Speech Transcripts for the Retrieval of Problematic Calls" @default.
- W1782271619 cites W1494604982 @default.
- W1782271619 cites W1631904934 @default.
- W1782271619 cites W163811496 @default.
- W1782271619 cites W1964809774 @default.
- W1782271619 cites W1988596541 @default.
- W1782271619 cites W200033050 @default.
- W1782271619 cites W2035265584 @default.
- W1782271619 cites W206067037 @default.
- W1782271619 cites W2084046180 @default.
- W1782271619 cites W2096767737 @default.
- W1782271619 cites W2137639365 @default.
- W1782271619 cites W4205184193 @default.
- W1782271619 doi "https://doi.org/10.1007/978-3-642-37256-8_8" @default.
- W1782271619 hasPublicationYear "2013" @default.
- W1782271619 type Work @default.
- W1782271619 sameAs 1782271619 @default.
- W1782271619 citedByCount "10" @default.
- W1782271619 countsByYear W17822716192014 @default.
- W1782271619 countsByYear W17822716192016 @default.
- W1782271619 countsByYear W17822716192017 @default.
- W1782271619 countsByYear W17822716192018 @default.
- W1782271619 countsByYear W17822716192019 @default.
- W1782271619 countsByYear W17822716192022 @default.
- W1782271619 crossrefType "book-chapter" @default.
- W1782271619 hasAuthorship W1782271619A5035300573 @default.
- W1782271619 hasAuthorship W1782271619A5078409829 @default.
- W1782271619 hasConcept C111472728 @default.
- W1782271619 hasConcept C111919701 @default.
- W1782271619 hasConcept C114614502 @default.
- W1782271619 hasConcept C127705205 @default.
- W1782271619 hasConcept C138885662 @default.
- W1782271619 hasConcept C154945302 @default.
- W1782271619 hasConcept C158154518 @default.
- W1782271619 hasConcept C16345878 @default.
- W1782271619 hasConcept C164226766 @default.
- W1782271619 hasConcept C17744445 @default.
- W1782271619 hasConcept C189430467 @default.
- W1782271619 hasConcept C199539241 @default.
- W1782271619 hasConcept C204321447 @default.
- W1782271619 hasConcept C23123220 @default.
- W1782271619 hasConcept C2524010 @default.
- W1782271619 hasConcept C2777200299 @default.
- W1782271619 hasConcept C2779530757 @default.
- W1782271619 hasConcept C28490314 @default.
- W1782271619 hasConcept C33923547 @default.
- W1782271619 hasConcept C41008148 @default.
- W1782271619 hasConcept C41895202 @default.
- W1782271619 hasConcept C81917197 @default.
- W1782271619 hasConceptScore W1782271619C111472728 @default.
- W1782271619 hasConceptScore W1782271619C111919701 @default.
- W1782271619 hasConceptScore W1782271619C114614502 @default.
- W1782271619 hasConceptScore W1782271619C127705205 @default.
- W1782271619 hasConceptScore W1782271619C138885662 @default.
- W1782271619 hasConceptScore W1782271619C154945302 @default.
- W1782271619 hasConceptScore W1782271619C158154518 @default.
- W1782271619 hasConceptScore W1782271619C16345878 @default.
- W1782271619 hasConceptScore W1782271619C164226766 @default.
- W1782271619 hasConceptScore W1782271619C17744445 @default.
- W1782271619 hasConceptScore W1782271619C189430467 @default.
- W1782271619 hasConceptScore W1782271619C199539241 @default.
- W1782271619 hasConceptScore W1782271619C204321447 @default.
- W1782271619 hasConceptScore W1782271619C23123220 @default.
- W1782271619 hasConceptScore W1782271619C2524010 @default.
- W1782271619 hasConceptScore W1782271619C2777200299 @default.
- W1782271619 hasConceptScore W1782271619C2779530757 @default.
- W1782271619 hasConceptScore W1782271619C28490314 @default.
- W1782271619 hasConceptScore W1782271619C33923547 @default.
- W1782271619 hasConceptScore W1782271619C41008148 @default.
- W1782271619 hasConceptScore W1782271619C41895202 @default.
- W1782271619 hasConceptScore W1782271619C81917197 @default.
- W1782271619 hasLocation W17822716191 @default.
- W1782271619 hasOpenAccess W1782271619 @default.
- W1782271619 hasPrimaryLocation W17822716191 @default.
- W1782271619 hasRelatedWork W104148947 @default.
- W1782271619 hasRelatedWork W1576467226 @default.
- W1782271619 hasRelatedWork W2027289847 @default.
- W1782271619 hasRelatedWork W2082738348 @default.
- W1782271619 hasRelatedWork W2237756989 @default.
- W1782271619 hasRelatedWork W2294459391 @default.
- W1782271619 hasRelatedWork W2295417928 @default.
- W1782271619 hasRelatedWork W2352397247 @default.
- W1782271619 hasRelatedWork W2581240705 @default.
- W1782271619 hasRelatedWork W3199233695 @default.
- W1782271619 isParatext "false" @default.
- W1782271619 isRetracted "false" @default.
- W1782271619 magId "1782271619" @default.
- W1782271619 workType "book-chapter" @default.