Matches in SemOpenAlex for { <https://semopenalex.org/work/W1783359406> ?p ?o ?g. }
Showing items 1 to 53 of
53
with 100 items per page.
- W1783359406 abstract "In this paper we present both stochastic and deterministic iterative methods for inference about random processes with symmetric stable innovations. The proposed methods use a scale mixtures of normals (SMiN) representation of the symmetric stable law to express the processes in conditionally Gaussian form. This allows standard procedures for dealing with the Gaussian case to be re-used directly as part of the scheme. In contrast with other recently published work on the topic, we propose a novel hybrid rejection sampling method for simulating the scale parameters from their full conditional distributions, making use of asymptotic approximations for the tail of a positive stable distribution when rejection rates are too high. This hybrid approach potentially leads to improved performance compared with straightforward rejection sampling or Metropolis-Hastings (M-H) approaches. The methods can be applied to any model with symmetric stable terms, but we illustrate their application to linear models and present simulations for AR time series with stable innovations." @default.
- W1783359406 created "2016-06-24" @default.
- W1783359406 creator A5020836373 @default.
- W1783359406 date "2003-01-20" @default.
- W1783359406 modified "2023-10-14" @default.
- W1783359406 title "MCMC and EM-based methods for inference in heavy-tailed processes with α-stable innovations" @default.
- W1783359406 cites W2008445894 @default.
- W1783359406 cites W2045345437 @default.
- W1783359406 cites W2062563598 @default.
- W1783359406 cites W2071218928 @default.
- W1783359406 cites W2136796925 @default.
- W1783359406 cites W4205637966 @default.
- W1783359406 cites W4242522981 @default.
- W1783359406 doi "https://doi.org/10.1109/host.1999.778731" @default.
- W1783359406 hasPublicationYear "2003" @default.
- W1783359406 type Work @default.
- W1783359406 sameAs 1783359406 @default.
- W1783359406 citedByCount "31" @default.
- W1783359406 countsByYear W17833594062012 @default.
- W1783359406 countsByYear W17833594062013 @default.
- W1783359406 countsByYear W17833594062014 @default.
- W1783359406 countsByYear W17833594062015 @default.
- W1783359406 countsByYear W17833594062018 @default.
- W1783359406 countsByYear W17833594062020 @default.
- W1783359406 crossrefType "proceedings-article" @default.
- W1783359406 hasAuthorship W1783359406A5020836373 @default.
- W1783359406 hasConcept C107673813 @default.
- W1783359406 hasConcept C111350023 @default.
- W1783359406 hasConcept C154945302 @default.
- W1783359406 hasConcept C2776214188 @default.
- W1783359406 hasConcept C41008148 @default.
- W1783359406 hasConceptScore W1783359406C107673813 @default.
- W1783359406 hasConceptScore W1783359406C111350023 @default.
- W1783359406 hasConceptScore W1783359406C154945302 @default.
- W1783359406 hasConceptScore W1783359406C2776214188 @default.
- W1783359406 hasConceptScore W1783359406C41008148 @default.
- W1783359406 hasLocation W17833594061 @default.
- W1783359406 hasOpenAccess W1783359406 @default.
- W1783359406 hasPrimaryLocation W17833594061 @default.
- W1783359406 hasRelatedWork W2146827233 @default.
- W1783359406 hasRelatedWork W2203948816 @default.
- W1783359406 hasRelatedWork W2367950322 @default.
- W1783359406 hasRelatedWork W2542506034 @default.
- W1783359406 hasRelatedWork W2803598280 @default.
- W1783359406 hasRelatedWork W2911297108 @default.
- W1783359406 hasRelatedWork W2977230103 @default.
- W1783359406 hasRelatedWork W3107474891 @default.
- W1783359406 hasRelatedWork W4289528260 @default.
- W1783359406 hasRelatedWork W86463150 @default.
- W1783359406 isParatext "false" @default.
- W1783359406 isRetracted "false" @default.
- W1783359406 magId "1783359406" @default.
- W1783359406 workType "article" @default.