Matches in SemOpenAlex for { <https://semopenalex.org/work/W1783384641> ?p ?o ?g. }
- W1783384641 abstract "Protein interactions are crucial components of all cellular processes. Recently, high-throughput methods have been developed to obtain a global description of the interactome (the whole network of protein interactions for a given organism). In 2002, the yeast interactome was estimated to contain up to 80,000 potential interactions. This estimate is based on the integration of data sets obtained by various methods (mass spectrometry, two-hybrid methods, genetic studies). High-throughput methods are known, however, to yield a non-negligible rate of false positives, and to miss a fraction of existing interactions. The interactome can be represented as a graph where nodes correspond with proteins and edges with pairwise interactions. In recent years clustering methods have been developed and applied in order to extract relevant modules from such graphs. These algorithms require the specification of parameters that may drastically affect the results. In this paper we present a comparative assessment of four algorithms: Markov Clustering (MCL), Restricted Neighborhood Search Clustering (RNSC), Super Paramagnetic Clustering (SPC), and Molecular Complex Detection (MCODE).A test graph was built on the basis of 220 complexes annotated in the MIPS database. To evaluate the robustness to false positives and false negatives, we derived 41 altered graphs by randomly removing edges from or adding edges to the test graph in various proportions. Each clustering algorithm was applied to these graphs with various parameter settings, and the clusters were compared with the annotated complexes. We analyzed the sensitivity of the algorithms to the parameters and determined their optimal parameter values. We also evaluated their robustness to alterations of the test graph. We then applied the four algorithms to six graphs obtained from high-throughput experiments and compared the resulting clusters with the annotated complexes.This analysis shows that MCL is remarkably robust to graph alterations. In the tests of robustness, RNSC is more sensitive to edge deletion but less sensitive to the use of suboptimal parameter values. The other two algorithms are clearly weaker under most conditions. The analysis of high-throughput data supports the superiority of MCL for the extraction of complexes from interaction networks." @default.
- W1783384641 created "2016-06-24" @default.
- W1783384641 creator A5056821549 @default.
- W1783384641 creator A5059528441 @default.
- W1783384641 date "2006-11-06" @default.
- W1783384641 modified "2023-10-10" @default.
- W1783384641 title "Evaluation of clustering algorithms for protein-protein interaction networks" @default.
- W1783384641 cites W1485582261 @default.
- W1783384641 cites W1563816212 @default.
- W1783384641 cites W1956694423 @default.
- W1783384641 cites W2011986160 @default.
- W1783384641 cites W2018045523 @default.
- W1783384641 cites W2018049970 @default.
- W1783384641 cites W2036826052 @default.
- W1783384641 cites W2037036397 @default.
- W1783384641 cites W2037433020 @default.
- W1783384641 cites W2043154233 @default.
- W1783384641 cites W2047693963 @default.
- W1783384641 cites W2050721857 @default.
- W1783384641 cites W2053906518 @default.
- W1783384641 cites W2065304353 @default.
- W1783384641 cites W2081931663 @default.
- W1783384641 cites W2082344308 @default.
- W1783384641 cites W2084619201 @default.
- W1783384641 cites W2095780712 @default.
- W1783384641 cites W2100585269 @default.
- W1783384641 cites W2101833102 @default.
- W1783384641 cites W2104080300 @default.
- W1783384641 cites W2113654464 @default.
- W1783384641 cites W2116117181 @default.
- W1783384641 cites W2117412805 @default.
- W1783384641 cites W2121507105 @default.
- W1783384641 cites W2122836610 @default.
- W1783384641 cites W2124166542 @default.
- W1783384641 cites W2124354935 @default.
- W1783384641 cites W2124821604 @default.
- W1783384641 cites W2126760155 @default.
- W1783384641 cites W2130790725 @default.
- W1783384641 cites W2131984349 @default.
- W1783384641 cites W2136850043 @default.
- W1783384641 cites W2138003801 @default.
- W1783384641 cites W2138582694 @default.
- W1783384641 cites W2142798246 @default.
- W1783384641 cites W2151875636 @default.
- W1783384641 cites W2152495216 @default.
- W1783384641 cites W2159675211 @default.
- W1783384641 cites W2167869241 @default.
- W1783384641 cites W2395595192 @default.
- W1783384641 doi "https://doi.org/10.1186/1471-2105-7-488" @default.
- W1783384641 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/1637120" @default.
- W1783384641 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/17087821" @default.
- W1783384641 hasPublicationYear "2006" @default.
- W1783384641 type Work @default.
- W1783384641 sameAs 1783384641 @default.
- W1783384641 citedByCount "770" @default.
- W1783384641 countsByYear W17833846412012 @default.
- W1783384641 countsByYear W17833846412013 @default.
- W1783384641 countsByYear W17833846412014 @default.
- W1783384641 countsByYear W17833846412015 @default.
- W1783384641 countsByYear W17833846412016 @default.
- W1783384641 countsByYear W17833846412017 @default.
- W1783384641 countsByYear W17833846412018 @default.
- W1783384641 countsByYear W17833846412019 @default.
- W1783384641 countsByYear W17833846412020 @default.
- W1783384641 countsByYear W17833846412021 @default.
- W1783384641 countsByYear W17833846412022 @default.
- W1783384641 countsByYear W17833846412023 @default.
- W1783384641 crossrefType "journal-article" @default.
- W1783384641 hasAuthorship W1783384641A5056821549 @default.
- W1783384641 hasAuthorship W1783384641A5059528441 @default.
- W1783384641 hasBestOaLocation W17833846411 @default.
- W1783384641 hasConcept C104317684 @default.
- W1783384641 hasConcept C11413529 @default.
- W1783384641 hasConcept C119857082 @default.
- W1783384641 hasConcept C124101348 @default.
- W1783384641 hasConcept C132525143 @default.
- W1783384641 hasConcept C154945302 @default.
- W1783384641 hasConcept C184898388 @default.
- W1783384641 hasConcept C41008148 @default.
- W1783384641 hasConcept C54355233 @default.
- W1783384641 hasConcept C63479239 @default.
- W1783384641 hasConcept C64869954 @default.
- W1783384641 hasConcept C73555534 @default.
- W1783384641 hasConcept C80444323 @default.
- W1783384641 hasConcept C86803240 @default.
- W1783384641 hasConcept C9760119 @default.
- W1783384641 hasConceptScore W1783384641C104317684 @default.
- W1783384641 hasConceptScore W1783384641C11413529 @default.
- W1783384641 hasConceptScore W1783384641C119857082 @default.
- W1783384641 hasConceptScore W1783384641C124101348 @default.
- W1783384641 hasConceptScore W1783384641C132525143 @default.
- W1783384641 hasConceptScore W1783384641C154945302 @default.
- W1783384641 hasConceptScore W1783384641C184898388 @default.
- W1783384641 hasConceptScore W1783384641C41008148 @default.
- W1783384641 hasConceptScore W1783384641C54355233 @default.
- W1783384641 hasConceptScore W1783384641C63479239 @default.
- W1783384641 hasConceptScore W1783384641C64869954 @default.
- W1783384641 hasConceptScore W1783384641C73555534 @default.
- W1783384641 hasConceptScore W1783384641C80444323 @default.
- W1783384641 hasConceptScore W1783384641C86803240 @default.