Matches in SemOpenAlex for { <https://semopenalex.org/work/W1783962013> ?p ?o ?g. }
Showing items 1 to 59 of
59
with 100 items per page.
- W1783962013 abstract "We will give a complete classification of non-rigid families of abelian varieties by means of the endomorphism algebra of the variation of Hodge structure. As a consequence, we can obtain several conditions of rigidity for abelian schemes. For example, we show that an abelian scheme which has no isotrivial factor is rigid if the relative dimension is less than 8. Moreover, examples of non-rigid abelian schemes are obtained as Kuga fiber spaces associated to symplectic representations classified by Satake. Introduction. Let Y be an algebraic curve defined over an algebraically closed field k of characteristic zero, and let Σ a Y be a finite set of points. Faltings [F] has shown a theorem of Arakelov-type for abelian varieties, that is, there are only finitely many families of principally polarized abelian varieties of relative dimension g on Y, with good reduction outside Σ, and satisfying the condition (*) in [F], His proof consists of two ingredients. First he showed that the moduli space of families of principally polarized abelian varieties on Y with good reduction outside Σ is a scheme of finite type over k (a boundedness result). Next he proved that a family of abelian varieties cannot be deformed (i.e., a family is rigid) if and only if the condition (*) is satisfied. The condition (*) says essentially that all endomorphisms of the local system of the first (co-)homology groups of fibers come from endomorphism of the abelian varieties, and Deligne [D] has shown that the condition is satisfied by a family of abelian varieties which has no isotrivial factors and the relative dimension <3. On the other hand, following Deligne's suggestion, Faltings [F] gave an example of non-rigid families of abelian varieties with relative dimension 8 which has no isotrivial factors. So it is interesting to ask, for example, whether there exists a non-rigid family of abelian varieties of relative dimension d, 4<d<Ί9 which has no isotrivial factors. In this paper, we will give a complete classification of non-rigid families of abelian varieties by means of the endomorphism algebra of the variation of Hodge structure of the first homology (or cohomology) groups of the fibers. Let S be a connected smooth quasi-projective variety over C, and / : X-+S an * Supported in part by the Japan Foundation and JAMI of the Johns Hopkins University. 1991 Mathematics Subject Classification. Primary 14J10; Secondary 14G35, 14G40." @default.
- W1783962013 created "2016-06-24" @default.
- W1783962013 creator A5051077930 @default.
- W1783962013 date "1993-01-01" @default.
- W1783962013 modified "2023-09-24" @default.
- W1783962013 title "Classification of nonrigid families of abelian varieties" @default.
- W1783962013 cites W1489394424 @default.
- W1783962013 cites W1563517868 @default.
- W1783962013 cites W1988000939 @default.
- W1783962013 cites W2004653144 @default.
- W1783962013 cites W2017009431 @default.
- W1783962013 cites W2017047095 @default.
- W1783962013 cites W2018931575 @default.
- W1783962013 cites W2036325941 @default.
- W1783962013 cites W2051357031 @default.
- W1783962013 cites W2063403564 @default.
- W1783962013 cites W2080409961 @default.
- W1783962013 cites W2319666400 @default.
- W1783962013 cites W2329218076 @default.
- W1783962013 cites W4237364295 @default.
- W1783962013 doi "https://doi.org/10.2748/tmj/1178225915" @default.
- W1783962013 hasPublicationYear "1993" @default.
- W1783962013 type Work @default.
- W1783962013 sameAs 1783962013 @default.
- W1783962013 citedByCount "12" @default.
- W1783962013 countsByYear W17839620132013 @default.
- W1783962013 countsByYear W17839620132017 @default.
- W1783962013 countsByYear W17839620132018 @default.
- W1783962013 countsByYear W17839620132020 @default.
- W1783962013 countsByYear W17839620132021 @default.
- W1783962013 countsByYear W17839620132022 @default.
- W1783962013 crossrefType "journal-article" @default.
- W1783962013 hasAuthorship W1783962013A5051077930 @default.
- W1783962013 hasBestOaLocation W17839620131 @default.
- W1783962013 hasConcept C136170076 @default.
- W1783962013 hasConcept C202444582 @default.
- W1783962013 hasConcept C33923547 @default.
- W1783962013 hasConceptScore W1783962013C136170076 @default.
- W1783962013 hasConceptScore W1783962013C202444582 @default.
- W1783962013 hasConceptScore W1783962013C33923547 @default.
- W1783962013 hasIssue "2" @default.
- W1783962013 hasLocation W17839620131 @default.
- W1783962013 hasOpenAccess W1783962013 @default.
- W1783962013 hasPrimaryLocation W17839620131 @default.
- W1783962013 hasRelatedWork W1497986648 @default.
- W1783962013 hasRelatedWork W1821847917 @default.
- W1783962013 hasRelatedWork W2006990530 @default.
- W1783962013 hasRelatedWork W2021494526 @default.
- W1783962013 hasRelatedWork W2032361691 @default.
- W1783962013 hasRelatedWork W2149376139 @default.
- W1783962013 hasRelatedWork W3083642434 @default.
- W1783962013 hasRelatedWork W4240632147 @default.
- W1783962013 hasRelatedWork W776536739 @default.
- W1783962013 hasRelatedWork W2056205479 @default.
- W1783962013 hasVolume "45" @default.
- W1783962013 isParatext "false" @default.
- W1783962013 isRetracted "false" @default.
- W1783962013 magId "1783962013" @default.
- W1783962013 workType "article" @default.