Matches in SemOpenAlex for { <https://semopenalex.org/work/W1785227512> ?p ?o ?g. }
- W1785227512 endingPage "136" @default.
- W1785227512 startingPage "113" @default.
- W1785227512 abstract "Sparsity-based representations have recently led to notable results in various visual recognition tasks. In a separate line of research, Riemannian manifolds have been shown useful for dealing with features and models that do not lie in Euclidean spaces. With the aim of building a bridge between the two realms, we address the problem of sparse coding and dictionary learning in Grassmann manifolds, i.e., the space of linear subspaces. To this end, we propose to embed Grassmann manifolds into the space of symmetric matrices by an isometric mapping. This in turn enables us to extend two sparse coding schemes to Grassmann manifolds. Furthermore, we propose an algorithm for learning a Grassmann dictionary, atom by atom. Lastly, to handle non-linearity in data, we extend the proposed Grassmann sparse coding and dictionary learning algorithms through embedding into higher dimensional Hilbert spaces. Experiments on several classification tasks (gender recognition, gesture classification, scene analysis, face recognition, action recognition and dynamic texture classification) show that the proposed approaches achieve considerable improvements in discrimination accuracy, in comparison to state-of-the-art methods such as kernelized Affine Hull Method and graph-embedding Grassmann discriminant analysis." @default.
- W1785227512 created "2016-06-24" @default.
- W1785227512 creator A5006294869 @default.
- W1785227512 creator A5020216442 @default.
- W1785227512 creator A5021790939 @default.
- W1785227512 creator A5054815937 @default.
- W1785227512 creator A5058539660 @default.
- W1785227512 date "2015-06-07" @default.
- W1785227512 modified "2023-10-18" @default.
- W1785227512 title "Extrinsic Methods for Coding and Dictionary Learning on Grassmann Manifolds" @default.
- W1785227512 cites W1508406818 @default.
- W1785227512 cites W1510073064 @default.
- W1785227512 cites W1545093576 @default.
- W1785227512 cites W1588644029 @default.
- W1785227512 cites W1969763012 @default.
- W1785227512 cites W1973532874 @default.
- W1785227512 cites W1988219946 @default.
- W1785227512 cites W1993962865 @default.
- W1785227512 cites W1996939238 @default.
- W1785227512 cites W2019245255 @default.
- W1785227512 cites W2021265981 @default.
- W1785227512 cites W2023927582 @default.
- W1785227512 cites W2027922120 @default.
- W1785227512 cites W2029414743 @default.
- W1785227512 cites W2038176251 @default.
- W1785227512 cites W2048192550 @default.
- W1785227512 cites W2053186076 @default.
- W1785227512 cites W2060634872 @default.
- W1785227512 cites W2066986622 @default.
- W1785227512 cites W2069959554 @default.
- W1785227512 cites W2082855665 @default.
- W1785227512 cites W2085269372 @default.
- W1785227512 cites W2092367756 @default.
- W1785227512 cites W2096484739 @default.
- W1785227512 cites W2109409043 @default.
- W1785227512 cites W2114122776 @default.
- W1785227512 cites W2122319321 @default.
- W1785227512 cites W2126017757 @default.
- W1785227512 cites W2129812935 @default.
- W1785227512 cites W2130843763 @default.
- W1785227512 cites W2134875082 @default.
- W1785227512 cites W2135046866 @default.
- W1785227512 cites W2138451337 @default.
- W1785227512 cites W2139916508 @default.
- W1785227512 cites W2141830256 @default.
- W1785227512 cites W2142040002 @default.
- W1785227512 cites W2142172505 @default.
- W1785227512 cites W2145096794 @default.
- W1785227512 cites W2145889472 @default.
- W1785227512 cites W2147631863 @default.
- W1785227512 cites W2149338181 @default.
- W1785227512 cites W2150600350 @default.
- W1785227512 cites W2151155403 @default.
- W1785227512 cites W2152914237 @default.
- W1785227512 cites W2158911079 @default.
- W1785227512 cites W2160547390 @default.
- W1785227512 cites W2161259116 @default.
- W1785227512 cites W2161969291 @default.
- W1785227512 cites W2162374132 @default.
- W1785227512 cites W2162744734 @default.
- W1785227512 cites W2163112044 @default.
- W1785227512 cites W2163352848 @default.
- W1785227512 cites W2165916500 @default.
- W1785227512 cites W2912155302 @default.
- W1785227512 cites W2977511996 @default.
- W1785227512 cites W3097096317 @default.
- W1785227512 cites W4205293427 @default.
- W1785227512 cites W4235713725 @default.
- W1785227512 cites W4248598408 @default.
- W1785227512 cites W4250955649 @default.
- W1785227512 cites W8105021 @default.
- W1785227512 doi "https://doi.org/10.1007/s11263-015-0833-x" @default.
- W1785227512 hasPublicationYear "2015" @default.
- W1785227512 type Work @default.
- W1785227512 sameAs 1785227512 @default.
- W1785227512 citedByCount "72" @default.
- W1785227512 countsByYear W17852275122015 @default.
- W1785227512 countsByYear W17852275122016 @default.
- W1785227512 countsByYear W17852275122017 @default.
- W1785227512 countsByYear W17852275122018 @default.
- W1785227512 countsByYear W17852275122019 @default.
- W1785227512 countsByYear W17852275122020 @default.
- W1785227512 countsByYear W17852275122021 @default.
- W1785227512 countsByYear W17852275122022 @default.
- W1785227512 countsByYear W17852275122023 @default.
- W1785227512 crossrefType "journal-article" @default.
- W1785227512 hasAuthorship W1785227512A5006294869 @default.
- W1785227512 hasAuthorship W1785227512A5020216442 @default.
- W1785227512 hasAuthorship W1785227512A5021790939 @default.
- W1785227512 hasAuthorship W1785227512A5054815937 @default.
- W1785227512 hasAuthorship W1785227512A5058539660 @default.
- W1785227512 hasBestOaLocation W17852275122 @default.
- W1785227512 hasConcept C112128483 @default.
- W1785227512 hasConcept C114614502 @default.
- W1785227512 hasConcept C12362212 @default.
- W1785227512 hasConcept C124066611 @default.
- W1785227512 hasConcept C153180895 @default.
- W1785227512 hasConcept C154945302 @default.