Matches in SemOpenAlex for { <https://semopenalex.org/work/W1786101580> ?p ?o ?g. }
- W1786101580 endingPage "378" @default.
- W1786101580 startingPage "363" @default.
- W1786101580 abstract "Weathering, mineral formation, and transformation processes along slopes are complex. In cool mountainous regions, undisturbed soil development with a strong vertical leaching element may abruptly change as a result of erosion, accumulation, lateral water fluxes and aeolian input. We investigated soils in the eastern Karkonosze Mountains that have developed on silicatic slope deposits. To date, illite, vermiculite and chlorite are the minerals that have been detected in the clay fraction. Although the climate and parent material should be favourable for the formation of smectites, expandable phases were not verified so far. We investigated if expandable phases could be detected and how they related to elemental fluxes along a short slope sequence (1142–1268 m a.s.l. on the border between the Czech Republic and Poland). Mass balance calculations indicated intensive mineral weathering together with a significant leaching of Mg, Al, Ca and Mn on the shoulder and foot slope positions. In the middle zone, which has a concave or undulating surface shape, however, the mass balances of several elements (Na, K, Al, P) revealed a less pronounced leaching (corresponding to a lower degree of podsolization) and in some cases even accumulation. At all sites, mass balance calculations and detected soil minerals (e.g. the increase in illite towards the surface together with an increase in Al and K) indicate some aeolian input. Kaolinite was detected in all soil horizons. Its concentration slightly increased towards the soil surface. Together with the pronounced leaching of Ca, part of kaolinite originates from plagioclase weathering. Besides being a weathering product of primary minerals, part of the kaolinite is inherited from the parent material and probably is also due to aeolian input. In all soils, illite was being transformed into vermiculite and smectites (through regularly-interstratified illite-smectite phases). In addition, the content of chloritic components which increases with depth indicated their concurrent weathering and transformation into smectites. Amphibole also may have acted as a source of smectites. Not all smectite is being actively formed in the soil. Most likely due to slope processes (cover beds) that affected even the subsoil, some smectite has been transferred along the slope. Part of the smectite also seems to derive from the parent material. Active formation of expandable clay minerals is related to convex and planar landscape forms. This relationship suggests intense element leaching, inheritance from the parent material and cover bed mixing processes have contributed to the presence of smectite. Along the slope, zones with predominant vertical transport (shoulder, foot slopes) may repeatedly be interchanged with zones dominated by lateral transport (undulating slope, concave forms)." @default.
- W1786101580 created "2016-06-24" @default.
- W1786101580 creator A5013367453 @default.
- W1786101580 creator A5016231185 @default.
- W1786101580 creator A5016926961 @default.
- W1786101580 creator A5085380516 @default.
- W1786101580 creator A5090517744 @default.
- W1786101580 date "2016-02-01" @default.
- W1786101580 modified "2023-10-10" @default.
- W1786101580 title "Mass fluxes and clay mineral formation in soils developed on slope deposits of the Kowarski Grzbiet (Karkonosze Mountains, Czech Republic/Poland)" @default.
- W1786101580 cites W1964677923 @default.
- W1786101580 cites W1968947744 @default.
- W1786101580 cites W1969675679 @default.
- W1786101580 cites W1975773022 @default.
- W1786101580 cites W1979993929 @default.
- W1786101580 cites W1980457530 @default.
- W1786101580 cites W1984237407 @default.
- W1786101580 cites W1986927739 @default.
- W1786101580 cites W1988672594 @default.
- W1786101580 cites W1990059612 @default.
- W1786101580 cites W1992953710 @default.
- W1786101580 cites W1995505826 @default.
- W1786101580 cites W1996749330 @default.
- W1786101580 cites W1998447100 @default.
- W1786101580 cites W2004581686 @default.
- W1786101580 cites W2008270617 @default.
- W1786101580 cites W2013411738 @default.
- W1786101580 cites W2018318168 @default.
- W1786101580 cites W2019112051 @default.
- W1786101580 cites W2026719342 @default.
- W1786101580 cites W2027176657 @default.
- W1786101580 cites W2033025648 @default.
- W1786101580 cites W2033418083 @default.
- W1786101580 cites W2035358035 @default.
- W1786101580 cites W2043246222 @default.
- W1786101580 cites W2043679467 @default.
- W1786101580 cites W2045097351 @default.
- W1786101580 cites W2046419184 @default.
- W1786101580 cites W2054975269 @default.
- W1786101580 cites W2055164749 @default.
- W1786101580 cites W2055861317 @default.
- W1786101580 cites W2057414181 @default.
- W1786101580 cites W2059675029 @default.
- W1786101580 cites W2065696274 @default.
- W1786101580 cites W2065845149 @default.
- W1786101580 cites W2067440971 @default.
- W1786101580 cites W2068264672 @default.
- W1786101580 cites W2068606014 @default.
- W1786101580 cites W2072598981 @default.
- W1786101580 cites W2075191370 @default.
- W1786101580 cites W2075321928 @default.
- W1786101580 cites W2082746960 @default.
- W1786101580 cites W2087640276 @default.
- W1786101580 cites W2092507611 @default.
- W1786101580 cites W2093147295 @default.
- W1786101580 cites W2096079757 @default.
- W1786101580 cites W2099782345 @default.
- W1786101580 cites W2105693364 @default.
- W1786101580 cites W2111401822 @default.
- W1786101580 cites W2113265591 @default.
- W1786101580 cites W2113275787 @default.
- W1786101580 cites W2118353549 @default.
- W1786101580 cites W2127309440 @default.
- W1786101580 cites W2138159606 @default.
- W1786101580 cites W2142378788 @default.
- W1786101580 cites W2149831795 @default.
- W1786101580 cites W2150441037 @default.
- W1786101580 cites W2154269647 @default.
- W1786101580 cites W2164760270 @default.
- W1786101580 cites W2168776973 @default.
- W1786101580 doi "https://doi.org/10.1016/j.geoderma.2015.08.044" @default.
- W1786101580 hasPublicationYear "2016" @default.
- W1786101580 type Work @default.
- W1786101580 sameAs 1786101580 @default.
- W1786101580 citedByCount "26" @default.
- W1786101580 countsByYear W17861015802016 @default.
- W1786101580 countsByYear W17861015802017 @default.
- W1786101580 countsByYear W17861015802018 @default.
- W1786101580 countsByYear W17861015802019 @default.
- W1786101580 countsByYear W17861015802020 @default.
- W1786101580 countsByYear W17861015802021 @default.
- W1786101580 countsByYear W17861015802022 @default.
- W1786101580 countsByYear W17861015802023 @default.
- W1786101580 crossrefType "journal-article" @default.
- W1786101580 hasAuthorship W1786101580A5013367453 @default.
- W1786101580 hasAuthorship W1786101580A5016231185 @default.
- W1786101580 hasAuthorship W1786101580A5016926961 @default.
- W1786101580 hasAuthorship W1786101580A5085380516 @default.
- W1786101580 hasAuthorship W1786101580A5090517744 @default.
- W1786101580 hasBestOaLocation W17861015802 @default.
- W1786101580 hasConcept C114793014 @default.
- W1786101580 hasConcept C116122396 @default.
- W1786101580 hasConcept C127313418 @default.
- W1786101580 hasConcept C151730666 @default.
- W1786101580 hasConcept C153389437 @default.
- W1786101580 hasConcept C159390177 @default.
- W1786101580 hasConcept C159750122 @default.
- W1786101580 hasConcept C17409809 @default.