Matches in SemOpenAlex for { <https://semopenalex.org/work/W178652651> ?p ?o ?g. }
- W178652651 endingPage "240" @default.
- W178652651 startingPage "225" @default.
- W178652651 abstract "A supervised learning approach to predict anatomical structures derived from computed tomography (CT) images using demographic and anthropometric information is proposed. The approach applies a dimensionality reduction technique to a training dataset to learn a low-dimensional manifold representing variation of organ geometry or variation of the CT intensities itself, which computes a mapping between a low-dimensional feature vector and the organ geometry or CT volume. Regression analysis is then applied to determine a regression function between the low-dimensional feature coordinates and external measurements of the subjects such as demographic or anthropometric data. Then for an unseen subject, the low-dimensional feature coordinates are predicted from external measurements using the computed regression function. Subsequently, the organ geometry or the CT volume is estimated from the mapping computed in the dimensionality reduction. As an example case, lung shapes and thoracic CT scans were analyzed based on available demographic parameters (age, gender, race) and anthropometric measurements (height, weight, and chest dimensions). The training dataset consisted of lung shapes represented as a topologically consistent point distribution model (PDM) and CT volumes ( $$256^{3},mathrm{voxels}, 1.5^{3},mathrm{mm}/mathrm{voxel}$$ ) of 124 subjects. The prediction error of lung shape of an unknown subject based on 11 independent demographic and anthropometric variables was $$10.71 pm 5.48,mathrm{mm}$$ . Isomap analysis of CT volumes revealed that 95 % of the total variance was explained with 4 dimensions, and the computed mapping clearly captured trends in anatomical variation. This suggested a potential for a direct CT-volume based statistical analysis using dimensionality reduction, which we call a voxel-based statistical atlas. Potential application areas of the proposed approach includes subject-specific ergonomic design in personal protective equipment or population-specific finite-element modeling in biomechanical analysis. Examples also include the use of a predicted patient-specific CT volume as it a prior information for image quality improvement in low dose CT, and optimization of CT scanning protocols." @default.
- W178652651 created "2016-06-24" @default.
- W178652651 creator A5005591168 @default.
- W178652651 creator A5007488006 @default.
- W178652651 creator A5007653696 @default.
- W178652651 creator A5014064453 @default.
- W178652651 creator A5023616096 @default.
- W178652651 creator A5051369007 @default.
- W178652651 creator A5061673195 @default.
- W178652651 creator A5063634022 @default.
- W178652651 creator A5065748216 @default.
- W178652651 creator A5090301235 @default.
- W178652651 creator A5091564772 @default.
- W178652651 date "2014-11-23" @default.
- W178652651 modified "2023-09-27" @default.
- W178652651 title "Supervised Learning of Anatomical Structures Using Demographic and Anthropometric Information" @default.
- W178652651 cites W1971993896 @default.
- W178652651 cites W1977928632 @default.
- W178652651 cites W2001141328 @default.
- W178652651 cites W2002616317 @default.
- W178652651 cites W2042547280 @default.
- W178652651 cites W2046758959 @default.
- W178652651 cites W2065637143 @default.
- W178652651 cites W2093775285 @default.
- W178652651 cites W2142445683 @default.
- W178652651 cites W2147169375 @default.
- W178652651 cites W2152947391 @default.
- W178652651 cites W2162168554 @default.
- W178652651 doi "https://doi.org/10.1007/978-3-319-12610-4_14" @default.
- W178652651 hasPublicationYear "2014" @default.
- W178652651 type Work @default.
- W178652651 sameAs 178652651 @default.
- W178652651 citedByCount "1" @default.
- W178652651 countsByYear W1786526512015 @default.
- W178652651 crossrefType "book-chapter" @default.
- W178652651 hasAuthorship W178652651A5005591168 @default.
- W178652651 hasAuthorship W178652651A5007488006 @default.
- W178652651 hasAuthorship W178652651A5007653696 @default.
- W178652651 hasAuthorship W178652651A5014064453 @default.
- W178652651 hasAuthorship W178652651A5023616096 @default.
- W178652651 hasAuthorship W178652651A5051369007 @default.
- W178652651 hasAuthorship W178652651A5061673195 @default.
- W178652651 hasAuthorship W178652651A5063634022 @default.
- W178652651 hasAuthorship W178652651A5065748216 @default.
- W178652651 hasAuthorship W178652651A5090301235 @default.
- W178652651 hasAuthorship W178652651A5091564772 @default.
- W178652651 hasConcept C105795698 @default.
- W178652651 hasConcept C126322002 @default.
- W178652651 hasConcept C126838900 @default.
- W178652651 hasConcept C138885662 @default.
- W178652651 hasConcept C151876577 @default.
- W178652651 hasConcept C153180895 @default.
- W178652651 hasConcept C154945302 @default.
- W178652651 hasConcept C2776401178 @default.
- W178652651 hasConcept C2778626561 @default.
- W178652651 hasConcept C2989005 @default.
- W178652651 hasConcept C33923547 @default.
- W178652651 hasConcept C41008148 @default.
- W178652651 hasConcept C41895202 @default.
- W178652651 hasConcept C48921125 @default.
- W178652651 hasConcept C54170458 @default.
- W178652651 hasConcept C544519230 @default.
- W178652651 hasConcept C61427482 @default.
- W178652651 hasConcept C70518039 @default.
- W178652651 hasConcept C71924100 @default.
- W178652651 hasConceptScore W178652651C105795698 @default.
- W178652651 hasConceptScore W178652651C126322002 @default.
- W178652651 hasConceptScore W178652651C126838900 @default.
- W178652651 hasConceptScore W178652651C138885662 @default.
- W178652651 hasConceptScore W178652651C151876577 @default.
- W178652651 hasConceptScore W178652651C153180895 @default.
- W178652651 hasConceptScore W178652651C154945302 @default.
- W178652651 hasConceptScore W178652651C2776401178 @default.
- W178652651 hasConceptScore W178652651C2778626561 @default.
- W178652651 hasConceptScore W178652651C2989005 @default.
- W178652651 hasConceptScore W178652651C33923547 @default.
- W178652651 hasConceptScore W178652651C41008148 @default.
- W178652651 hasConceptScore W178652651C41895202 @default.
- W178652651 hasConceptScore W178652651C48921125 @default.
- W178652651 hasConceptScore W178652651C54170458 @default.
- W178652651 hasConceptScore W178652651C544519230 @default.
- W178652651 hasConceptScore W178652651C61427482 @default.
- W178652651 hasConceptScore W178652651C70518039 @default.
- W178652651 hasConceptScore W178652651C71924100 @default.
- W178652651 hasLocation W1786526511 @default.
- W178652651 hasOpenAccess W178652651 @default.
- W178652651 hasPrimaryLocation W1786526511 @default.
- W178652651 hasRelatedWork W1030125312 @default.
- W178652651 hasRelatedWork W1628172068 @default.
- W178652651 hasRelatedWork W2014835756 @default.
- W178652651 hasRelatedWork W2101622159 @default.
- W178652651 hasRelatedWork W2136632092 @default.
- W178652651 hasRelatedWork W2139206098 @default.
- W178652651 hasRelatedWork W2140984684 @default.
- W178652651 hasRelatedWork W2172836935 @default.
- W178652651 hasRelatedWork W2954900227 @default.
- W178652651 hasRelatedWork W90938451 @default.
- W178652651 isParatext "false" @default.