Matches in SemOpenAlex for { <https://semopenalex.org/work/W178656816> ?p ?o ?g. }
- W178656816 endingPage "117" @default.
- W178656816 startingPage "91" @default.
- W178656816 abstract "This is an intuitive survey of extrinsic and intrinsic notions of convergence of manifolds complete with pictures of key examples and a discussion of the properties associated with each notion. We begin with a description of three extrinsic notions which have been applied to study sequences of submanifolds in Euclidean space: Hausdorff convergence of sets, flat convergence of integral currents, and weak convergence of varifolds. We next describe a variety of intrinsic notions of convergence which have been applied to study sequences of compact Riemannian manifolds: Gromov-Hausdorff convergence of metric spaces, convergence of metric measure spaces, intrinsic Flat convergence of integral current spaces, and ultralimits of metric spaces. We close with a speculative section addressing possible notions of intrinsic varifold convergence, convergence of Lorentzian manifolds and area convergence." @default.
- W178656816 created "2016-06-24" @default.
- W178656816 creator A5022269955 @default.
- W178656816 date "2012-01-01" @default.
- W178656816 modified "2023-09-26" @default.
- W178656816 title "How Riemannian Manifolds Converge" @default.
- W178656816 cites W1504849653 @default.
- W178656816 cites W1810255743 @default.
- W178656816 cites W184326738 @default.
- W178656816 cites W1870973791 @default.
- W178656816 cites W1968781546 @default.
- W178656816 cites W1970521474 @default.
- W178656816 cites W1977044533 @default.
- W178656816 cites W1984988864 @default.
- W178656816 cites W1994565858 @default.
- W178656816 cites W2014513497 @default.
- W178656816 cites W2017355236 @default.
- W178656816 cites W2018294758 @default.
- W178656816 cites W2021186843 @default.
- W178656816 cites W2028258142 @default.
- W178656816 cites W2049375323 @default.
- W178656816 cites W2050515462 @default.
- W178656816 cites W2052192537 @default.
- W178656816 cites W2061814576 @default.
- W178656816 cites W2066457680 @default.
- W178656816 cites W2067423010 @default.
- W178656816 cites W2074267610 @default.
- W178656816 cites W2082252207 @default.
- W178656816 cites W2088397367 @default.
- W178656816 cites W2094793033 @default.
- W178656816 cites W2114307190 @default.
- W178656816 cites W2130439475 @default.
- W178656816 cites W2134086356 @default.
- W178656816 cites W2168083306 @default.
- W178656816 cites W2964151516 @default.
- W178656816 cites W3102109908 @default.
- W178656816 cites W4233762729 @default.
- W178656816 cites W4239310119 @default.
- W178656816 cites W4239366062 @default.
- W178656816 cites W4248500611 @default.
- W178656816 cites W4253642125 @default.
- W178656816 cites W62712765 @default.
- W178656816 doi "https://doi.org/10.1007/978-3-0348-0257-4_4" @default.
- W178656816 hasPublicationYear "2012" @default.
- W178656816 type Work @default.
- W178656816 sameAs 178656816 @default.
- W178656816 citedByCount "10" @default.
- W178656816 countsByYear W1786568162016 @default.
- W178656816 countsByYear W1786568162017 @default.
- W178656816 countsByYear W1786568162018 @default.
- W178656816 countsByYear W1786568162020 @default.
- W178656816 countsByYear W1786568162021 @default.
- W178656816 countsByYear W1786568162022 @default.
- W178656816 crossrefType "book-chapter" @default.
- W178656816 hasAuthorship W178656816A5022269955 @default.
- W178656816 hasBestOaLocation W1786568162 @default.
- W178656816 hasConcept C134306372 @default.
- W178656816 hasConcept C141898687 @default.
- W178656816 hasConcept C14928880 @default.
- W178656816 hasConcept C162324750 @default.
- W178656816 hasConcept C174265945 @default.
- W178656816 hasConcept C181104567 @default.
- W178656816 hasConcept C191399826 @default.
- W178656816 hasConcept C198043062 @default.
- W178656816 hasConcept C202444582 @default.
- W178656816 hasConcept C26517878 @default.
- W178656816 hasConcept C2777303404 @default.
- W178656816 hasConcept C33923547 @default.
- W178656816 hasConcept C38652104 @default.
- W178656816 hasConcept C41008148 @default.
- W178656816 hasConcept C47776270 @default.
- W178656816 hasConcept C48216909 @default.
- W178656816 hasConcept C50522688 @default.
- W178656816 hasConcept C538505008 @default.
- W178656816 hasConcept C57869625 @default.
- W178656816 hasConcept C57945734 @default.
- W178656816 hasConcept C5871375 @default.
- W178656816 hasConcept C76178495 @default.
- W178656816 hasConcept C81332173 @default.
- W178656816 hasConceptScore W178656816C134306372 @default.
- W178656816 hasConceptScore W178656816C141898687 @default.
- W178656816 hasConceptScore W178656816C14928880 @default.
- W178656816 hasConceptScore W178656816C162324750 @default.
- W178656816 hasConceptScore W178656816C174265945 @default.
- W178656816 hasConceptScore W178656816C181104567 @default.
- W178656816 hasConceptScore W178656816C191399826 @default.
- W178656816 hasConceptScore W178656816C198043062 @default.
- W178656816 hasConceptScore W178656816C202444582 @default.
- W178656816 hasConceptScore W178656816C26517878 @default.
- W178656816 hasConceptScore W178656816C2777303404 @default.
- W178656816 hasConceptScore W178656816C33923547 @default.
- W178656816 hasConceptScore W178656816C38652104 @default.
- W178656816 hasConceptScore W178656816C41008148 @default.
- W178656816 hasConceptScore W178656816C47776270 @default.
- W178656816 hasConceptScore W178656816C48216909 @default.
- W178656816 hasConceptScore W178656816C50522688 @default.
- W178656816 hasConceptScore W178656816C538505008 @default.
- W178656816 hasConceptScore W178656816C57869625 @default.