Matches in SemOpenAlex for { <https://semopenalex.org/work/W1792771818> ?p ?o ?g. }
- W1792771818 endingPage "168" @default.
- W1792771818 startingPage "156" @default.
- W1792771818 abstract "The classical spectral representation method (SRM) has been extensively used in the simulation of multivariate stationary Gaussian random processes. Due to the application of fast Fourier transform (FFT), the simulation is usually efficient. However, for processes with a large number of simulation points, it becomes necessary to enhance the simulation efficiency. One example is the wind velocity field along a large-span bridge, where hundreds of wind velocity fluctuations are required. In the case of bridges built over a homogeneous terrain such as coastal area or flat plain, the wind velocity field can be modeled as a multivariate homogeneous random process i.e., the auto power spectral densities (PSDs) at evenly-spaced simulation points are same and the cross PSD is a function of separation distance between two simulation points. Furthermore, in some applications, additional simulation points need to be included to a set of uniformly distributed points in order to make the wind velocity field consistent to the structural dynamic analysis requirement. In this paper, a hybrid approach of space–time random-field based SRM and proper orthogonal decomposition (POD)-based interpolation is developed for simulating the above wind velocity process. In this approach, the random-field based SRM is used to simulate the multivariate homogeneous random process composed of a set of uniformly distributed simulation locations while POD-based interpolation is used to conditionally generate the wind velocities at a few unevenly distributed points using the previously simulated wind velocities. The idea of the former is based on transforming the simulation of the homogeneous random process into that of the corresponding space–time random field where the phase angle is assumed to be zero and the coherence function must be an even function in terms of separation distance. Through this procedure, customary requirement for spectral matrix decomposition is eliminated and application of two dimensional FFT can improve the simulation efficiency dramatically. The shortcomings of this method include a slight approximation regarding the simulated sample and the non-ergodicity for the correlation function. The numerical example of a homogeneous wind velocity field along a bridge deck shows that the proposed random field-based method is very efficient in terms of accuracy and efficiency when the number of simulation locations is large and the POD-based interpolation also has good performance." @default.
- W1792771818 created "2016-06-24" @default.
- W1792771818 creator A5017859691 @default.
- W1792771818 creator A5032351159 @default.
- W1792771818 creator A5069470138 @default.
- W1792771818 creator A5084350058 @default.
- W1792771818 date "2016-01-01" @default.
- W1792771818 modified "2023-10-14" @default.
- W1792771818 title "An efficient space–time based simulation approach of wind velocity field with embedded conditional interpolation for unevenly spaced locations" @default.
- W1792771818 cites W1921505980 @default.
- W1792771818 cites W1966866877 @default.
- W1792771818 cites W1972363525 @default.
- W1792771818 cites W1974202130 @default.
- W1792771818 cites W1975477866 @default.
- W1792771818 cites W1977873405 @default.
- W1792771818 cites W1982770560 @default.
- W1792771818 cites W1988416579 @default.
- W1792771818 cites W1989267357 @default.
- W1792771818 cites W1996647129 @default.
- W1792771818 cites W2007971444 @default.
- W1792771818 cites W2014620185 @default.
- W1792771818 cites W2016176962 @default.
- W1792771818 cites W2016488806 @default.
- W1792771818 cites W2019199277 @default.
- W1792771818 cites W2026289969 @default.
- W1792771818 cites W2026445345 @default.
- W1792771818 cites W2029573240 @default.
- W1792771818 cites W2032231251 @default.
- W1792771818 cites W2032340258 @default.
- W1792771818 cites W2038030613 @default.
- W1792771818 cites W2043099482 @default.
- W1792771818 cites W2043911655 @default.
- W1792771818 cites W2049858044 @default.
- W1792771818 cites W2052636318 @default.
- W1792771818 cites W2054013528 @default.
- W1792771818 cites W2061119155 @default.
- W1792771818 cites W2065812818 @default.
- W1792771818 cites W2071401446 @default.
- W1792771818 cites W2076411464 @default.
- W1792771818 cites W2077584962 @default.
- W1792771818 cites W2080116587 @default.
- W1792771818 cites W2082640724 @default.
- W1792771818 cites W2099212862 @default.
- W1792771818 cites W2123898722 @default.
- W1792771818 cites W2145454654 @default.
- W1792771818 cites W2164590558 @default.
- W1792771818 cites W4214713568 @default.
- W1792771818 doi "https://doi.org/10.1016/j.probengmech.2015.10.006" @default.
- W1792771818 hasPublicationYear "2016" @default.
- W1792771818 type Work @default.
- W1792771818 sameAs 1792771818 @default.
- W1792771818 citedByCount "33" @default.
- W1792771818 countsByYear W17927718182017 @default.
- W1792771818 countsByYear W17927718182018 @default.
- W1792771818 countsByYear W17927718182019 @default.
- W1792771818 countsByYear W17927718182020 @default.
- W1792771818 countsByYear W17927718182021 @default.
- W1792771818 countsByYear W17927718182022 @default.
- W1792771818 countsByYear W17927718182023 @default.
- W1792771818 crossrefType "journal-article" @default.
- W1792771818 hasAuthorship W1792771818A5017859691 @default.
- W1792771818 hasAuthorship W1792771818A5032351159 @default.
- W1792771818 hasAuthorship W1792771818A5069470138 @default.
- W1792771818 hasAuthorship W1792771818A5084350058 @default.
- W1792771818 hasBestOaLocation W17927718181 @default.
- W1792771818 hasConcept C105795698 @default.
- W1792771818 hasConcept C11413529 @default.
- W1792771818 hasConcept C121332964 @default.
- W1792771818 hasConcept C121684516 @default.
- W1792771818 hasConcept C130402806 @default.
- W1792771818 hasConcept C137800194 @default.
- W1792771818 hasConcept C153294291 @default.
- W1792771818 hasConcept C161067210 @default.
- W1792771818 hasConcept C163716315 @default.
- W1792771818 hasConcept C33923547 @default.
- W1792771818 hasConcept C41008148 @default.
- W1792771818 hasConcept C502989409 @default.
- W1792771818 hasConcept C61326573 @default.
- W1792771818 hasConcept C62520636 @default.
- W1792771818 hasConcept C75172450 @default.
- W1792771818 hasConcept C81692654 @default.
- W1792771818 hasConceptScore W1792771818C105795698 @default.
- W1792771818 hasConceptScore W1792771818C11413529 @default.
- W1792771818 hasConceptScore W1792771818C121332964 @default.
- W1792771818 hasConceptScore W1792771818C121684516 @default.
- W1792771818 hasConceptScore W1792771818C130402806 @default.
- W1792771818 hasConceptScore W1792771818C137800194 @default.
- W1792771818 hasConceptScore W1792771818C153294291 @default.
- W1792771818 hasConceptScore W1792771818C161067210 @default.
- W1792771818 hasConceptScore W1792771818C163716315 @default.
- W1792771818 hasConceptScore W1792771818C33923547 @default.
- W1792771818 hasConceptScore W1792771818C41008148 @default.
- W1792771818 hasConceptScore W1792771818C502989409 @default.
- W1792771818 hasConceptScore W1792771818C61326573 @default.
- W1792771818 hasConceptScore W1792771818C62520636 @default.
- W1792771818 hasConceptScore W1792771818C75172450 @default.
- W1792771818 hasConceptScore W1792771818C81692654 @default.
- W1792771818 hasFunder F4320321001 @default.