Matches in SemOpenAlex for { <https://semopenalex.org/work/W179376972> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W179376972 abstract "A major challenge in multi-agent reinforcement learning remains dealing with the large state spaces typically associated with realistic multi-agent systems. As the state space grows, agent policies become more and more complex and learning slows down. The presence of possibly redundant information is one of the causes of this issue. Current single-agent techniques are already very capable of learning optimal policies in large unknown environments. When multiple agents are present however, we are challenged by an increase of the state space, which is exponential in the number of agents. A solution to this problem lies in the use of Generalized Learning Automata (GLA). In this chapter we will first demonstrate how GLA can help take the correct actions in large unknown environments. Secondly, we introduce a general framework for multi-agent learning, where learning happens on two separate layers and agents learn when to observe each other. Within this framework we introduce a new algorithm, called 2observe, which uses a GLA-approach to distinguish between high risk states where the agents have to take each others presence into account and low risk states where they can act independently. Finally we apply this algorithm to a gridworld problem because of the similarities to some real-world problems, such as autonomous robot control." @default.
- W179376972 created "2016-06-24" @default.
- W179376972 creator A5062896285 @default.
- W179376972 creator A5064553018 @default.
- W179376972 creator A5067801628 @default.
- W179376972 date "2010-01-01" @default.
- W179376972 modified "2023-09-26" @default.
- W179376972 title "Multi-Agent Systems and Large State Spaces" @default.
- W179376972 cites W1514065457 @default.
- W179376972 cites W1556824961 @default.
- W179376972 cites W2050884147 @default.
- W179376972 cites W2107726111 @default.
- W179376972 cites W2109910161 @default.
- W179376972 cites W2124152208 @default.
- W179376972 cites W2131660762 @default.
- W179376972 cites W2233997862 @default.
- W179376972 cites W2484003876 @default.
- W179376972 cites W2575731723 @default.
- W179376972 cites W4255047891 @default.
- W179376972 doi "https://doi.org/10.1007/978-3-642-13526-2_9" @default.
- W179376972 hasPublicationYear "2010" @default.
- W179376972 type Work @default.
- W179376972 sameAs 179376972 @default.
- W179376972 citedByCount "1" @default.
- W179376972 crossrefType "book-chapter" @default.
- W179376972 hasAuthorship W179376972A5062896285 @default.
- W179376972 hasAuthorship W179376972A5064553018 @default.
- W179376972 hasAuthorship W179376972A5067801628 @default.
- W179376972 hasConcept C105795698 @default.
- W179376972 hasConcept C111919701 @default.
- W179376972 hasConcept C112505250 @default.
- W179376972 hasConcept C11413529 @default.
- W179376972 hasConcept C119857082 @default.
- W179376972 hasConcept C154945302 @default.
- W179376972 hasConcept C188116033 @default.
- W179376972 hasConcept C2776807809 @default.
- W179376972 hasConcept C2778572836 @default.
- W179376972 hasConcept C33923547 @default.
- W179376972 hasConcept C41008148 @default.
- W179376972 hasConcept C41550386 @default.
- W179376972 hasConcept C48103436 @default.
- W179376972 hasConcept C72434380 @default.
- W179376972 hasConcept C97541855 @default.
- W179376972 hasConceptScore W179376972C105795698 @default.
- W179376972 hasConceptScore W179376972C111919701 @default.
- W179376972 hasConceptScore W179376972C112505250 @default.
- W179376972 hasConceptScore W179376972C11413529 @default.
- W179376972 hasConceptScore W179376972C119857082 @default.
- W179376972 hasConceptScore W179376972C154945302 @default.
- W179376972 hasConceptScore W179376972C188116033 @default.
- W179376972 hasConceptScore W179376972C2776807809 @default.
- W179376972 hasConceptScore W179376972C2778572836 @default.
- W179376972 hasConceptScore W179376972C33923547 @default.
- W179376972 hasConceptScore W179376972C41008148 @default.
- W179376972 hasConceptScore W179376972C41550386 @default.
- W179376972 hasConceptScore W179376972C48103436 @default.
- W179376972 hasConceptScore W179376972C72434380 @default.
- W179376972 hasConceptScore W179376972C97541855 @default.
- W179376972 hasLocation W1793769721 @default.
- W179376972 hasOpenAccess W179376972 @default.
- W179376972 hasPrimaryLocation W1793769721 @default.
- W179376972 hasRelatedWork W1549746313 @default.
- W179376972 hasRelatedWork W1868540347 @default.
- W179376972 hasRelatedWork W2148086733 @default.
- W179376972 hasRelatedWork W2292969843 @default.
- W179376972 hasRelatedWork W2297907884 @default.
- W179376972 hasRelatedWork W2322168405 @default.
- W179376972 hasRelatedWork W2403690381 @default.
- W179376972 hasRelatedWork W2462355218 @default.
- W179376972 hasRelatedWork W2471081794 @default.
- W179376972 hasRelatedWork W2576551432 @default.
- W179376972 hasRelatedWork W2592484325 @default.
- W179376972 hasRelatedWork W2903475313 @default.
- W179376972 hasRelatedWork W2969966185 @default.
- W179376972 hasRelatedWork W2979363950 @default.
- W179376972 hasRelatedWork W2980784261 @default.
- W179376972 hasRelatedWork W2991479173 @default.
- W179376972 hasRelatedWork W2994642062 @default.
- W179376972 hasRelatedWork W3159224411 @default.
- W179376972 hasRelatedWork W3175552386 @default.
- W179376972 hasRelatedWork W3194918094 @default.
- W179376972 isParatext "false" @default.
- W179376972 isRetracted "false" @default.
- W179376972 magId "179376972" @default.
- W179376972 workType "book-chapter" @default.