Matches in SemOpenAlex for { <https://semopenalex.org/work/W1794354874> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W1794354874 abstract "The study of sediment transport in water natural bodies is a challenging task. There have been several attempts to describe sediment mathematically using hydraulic characteristics of water bodies. Most researchers who developed empirical formulas to describe sediment transport performed laboratory experiments with assumptions that did not take into account variations of hydraulic parameters and the fine sediment sizes that are part of this phenomenon. Recently, new approaches for studying sediment transport have been developed involving the use of machine-learning algorithms that have proven accuracy and efficiency in predicting sediment transport. A novel machine-learning method, the Multivariate Relevance Vector Machine (MVRVM), has yet to be tested to model sediment transport and water quality in estuaries and lakes. The selection of the MVRVM is suggested by the limited field observations that present challenges for alternative statistical learning machines, and by the promise of using the MVRVM approach to inform future data-collection efforts. This paper tests the success of calibrating the MVRVM model to predict suspended fine-sediment transport and other environmental measures in Mud Lake, southeastern Idaho, United States. In addition, the authors introduce and explain the technique that can be used to arrange the data which will allow the model to work. Training and validation results for turbidity, total suspended solids (TSS), pH, dissolved oxygen (DO), and water temperature are presented. These results emphasize that modeling the water-quality constituents and sediment transport with few observations is possible using the MVRVM." @default.
- W1794354874 created "2016-06-24" @default.
- W1794354874 creator A5011744244 @default.
- W1794354874 creator A5019244672 @default.
- W1794354874 date "2016-01-01" @default.
- W1794354874 modified "2023-09-23" @default.
- W1794354874 title "Can Suspended Fine-Sediment Transport in Shallow Lakes Be Predicted Using MVRVM with Limited Observations?" @default.
- W1794354874 cites W1589475696 @default.
- W1794354874 cites W1965295747 @default.
- W1794354874 cites W1974597004 @default.
- W1794354874 cites W1995277704 @default.
- W1794354874 cites W2012027190 @default.
- W1794354874 cites W2017156029 @default.
- W1794354874 cites W2020967943 @default.
- W1794354874 cites W2024368405 @default.
- W1794354874 cites W2032986538 @default.
- W1794354874 cites W2042985051 @default.
- W1794354874 cites W2045567652 @default.
- W1794354874 cites W2116422023 @default.
- W1794354874 cites W2124935883 @default.
- W1794354874 cites W2150169560 @default.
- W1794354874 cites W2151571212 @default.
- W1794354874 cites W2322865483 @default.
- W1794354874 cites W3140072223 @default.
- W1794354874 doi "https://doi.org/10.1061/(asce)ee.1943-7870.0001003" @default.
- W1794354874 hasPublicationYear "2016" @default.
- W1794354874 type Work @default.
- W1794354874 sameAs 1794354874 @default.
- W1794354874 citedByCount "1" @default.
- W1794354874 countsByYear W17943548742016 @default.
- W1794354874 crossrefType "journal-article" @default.
- W1794354874 hasAuthorship W1794354874A5011744244 @default.
- W1794354874 hasAuthorship W1794354874A5019244672 @default.
- W1794354874 hasConcept C111368507 @default.
- W1794354874 hasConcept C114793014 @default.
- W1794354874 hasConcept C127313418 @default.
- W1794354874 hasConcept C187320778 @default.
- W1794354874 hasConcept C18903297 @default.
- W1794354874 hasConcept C2780797713 @default.
- W1794354874 hasConcept C2816523 @default.
- W1794354874 hasConcept C39432304 @default.
- W1794354874 hasConcept C64016661 @default.
- W1794354874 hasConcept C65589250 @default.
- W1794354874 hasConcept C76886044 @default.
- W1794354874 hasConcept C86803240 @default.
- W1794354874 hasConceptScore W1794354874C111368507 @default.
- W1794354874 hasConceptScore W1794354874C114793014 @default.
- W1794354874 hasConceptScore W1794354874C127313418 @default.
- W1794354874 hasConceptScore W1794354874C187320778 @default.
- W1794354874 hasConceptScore W1794354874C18903297 @default.
- W1794354874 hasConceptScore W1794354874C2780797713 @default.
- W1794354874 hasConceptScore W1794354874C2816523 @default.
- W1794354874 hasConceptScore W1794354874C39432304 @default.
- W1794354874 hasConceptScore W1794354874C64016661 @default.
- W1794354874 hasConceptScore W1794354874C65589250 @default.
- W1794354874 hasConceptScore W1794354874C76886044 @default.
- W1794354874 hasConceptScore W1794354874C86803240 @default.
- W1794354874 hasIssue "1" @default.
- W1794354874 hasLocation W17943548741 @default.
- W1794354874 hasOpenAccess W1794354874 @default.
- W1794354874 hasPrimaryLocation W17943548741 @default.
- W1794354874 hasRelatedWork W1970030194 @default.
- W1794354874 hasRelatedWork W2122638437 @default.
- W1794354874 hasRelatedWork W2572956499 @default.
- W1794354874 hasRelatedWork W2607474063 @default.
- W1794354874 hasRelatedWork W29545445 @default.
- W1794354874 hasRelatedWork W3018395630 @default.
- W1794354874 hasRelatedWork W3158962214 @default.
- W1794354874 hasRelatedWork W4367668336 @default.
- W1794354874 hasRelatedWork W4383618743 @default.
- W1794354874 hasRelatedWork W2141309307 @default.
- W1794354874 hasVolume "142" @default.
- W1794354874 isParatext "false" @default.
- W1794354874 isRetracted "false" @default.
- W1794354874 magId "1794354874" @default.
- W1794354874 workType "article" @default.