Matches in SemOpenAlex for { <https://semopenalex.org/work/W1796149648> ?p ?o ?g. }
- W1796149648 endingPage "11542" @default.
- W1796149648 startingPage "11532" @default.
- W1796149648 abstract "The deployment of visuospatial attention and the programming of saccades are governed by the inferred likelihood of events. In the present study, we combined computational modeling of psychophysical data with fMRI to characterize the computational and neural mechanisms underlying this flexible attentional control. Sixteen healthy human subjects performed a modified version of Posner's location-cueing paradigm in which the percentage of cue validity varied in time and the targets required saccadic responses. Trialwise estimates of the certainty (precision) of the prediction that the target would appear at the cued location were derived from a hierarchical Bayesian model fitted to individual trialwise saccadic response speeds. Trial-specific model parameters then entered analyses of fMRI data as parametric regressors. Moreover, dynamic causal modeling (DCM) was performed to identify the most likely functional architecture of the attentional reorienting network and its modulation by (Bayes-optimal) precision-dependent attention. While the frontal eye fields (FEFs), intraparietal sulcus, and temporoparietal junction (TPJ) of both hemispheres showed higher activity on invalid relative to valid trials, reorienting responses in right FEF, TPJ, and the putamen were significantly modulated by precision-dependent attention. Our DCM results suggested that the precision of predictability underlies the attentional modulation of the coupling of TPJ with FEF and the putamen. Our results shed new light on the computational architecture and neuronal network dynamics underlying the context-sensitive deployment of visuospatial attention.Spatial attention and its neural correlates in the human brain have been studied extensively with the help of fMRI and cueing paradigms in which the location of targets is pre-cued on a trial-by-trial basis. One aspect that has so far been neglected concerns the question of how the brain forms attentional expectancies when no a priori probability information is available but needs to be inferred from observations. This study elucidates the computational and neural mechanisms under which probabilistic inference governs attentional deployment. Our results show that Bayesian belief updating explains changes in cortical connectivity; in that directional influences from the temporoparietal junction on the frontal eye fields and the putamen were modulated by (Bayes-optimal) updates." @default.
- W1796149648 created "2016-06-24" @default.
- W1796149648 creator A5016719332 @default.
- W1796149648 creator A5021358582 @default.
- W1796149648 creator A5051039296 @default.
- W1796149648 creator A5086852785 @default.
- W1796149648 date "2015-08-19" @default.
- W1796149648 modified "2023-10-14" @default.
- W1796149648 title "Cortical Coupling Reflects Bayesian Belief Updating in the Deployment of Spatial Attention" @default.
- W1796149648 cites W1968525864 @default.
- W1796149648 cites W1971153664 @default.
- W1796149648 cites W1972690852 @default.
- W1796149648 cites W1977121540 @default.
- W1796149648 cites W1979732124 @default.
- W1796149648 cites W1986387796 @default.
- W1796149648 cites W1996458768 @default.
- W1796149648 cites W1998151455 @default.
- W1796149648 cites W2001284551 @default.
- W1796149648 cites W2002415689 @default.
- W1796149648 cites W2008441351 @default.
- W1796149648 cites W2012230597 @default.
- W1796149648 cites W2013554506 @default.
- W1796149648 cites W2013803214 @default.
- W1796149648 cites W2015456912 @default.
- W1796149648 cites W2019054276 @default.
- W1796149648 cites W2019370496 @default.
- W1796149648 cites W2021630210 @default.
- W1796149648 cites W2027554764 @default.
- W1796149648 cites W2028964134 @default.
- W1796149648 cites W2038995655 @default.
- W1796149648 cites W2045008006 @default.
- W1796149648 cites W2052398297 @default.
- W1796149648 cites W2053651913 @default.
- W1796149648 cites W2058420610 @default.
- W1796149648 cites W2061759044 @default.
- W1796149648 cites W2064485182 @default.
- W1796149648 cites W2069258922 @default.
- W1796149648 cites W2074317665 @default.
- W1796149648 cites W2074610617 @default.
- W1796149648 cites W2079366972 @default.
- W1796149648 cites W2080632618 @default.
- W1796149648 cites W2083956595 @default.
- W1796149648 cites W2086124986 @default.
- W1796149648 cites W2105041994 @default.
- W1796149648 cites W2108981972 @default.
- W1796149648 cites W2112092266 @default.
- W1796149648 cites W2113023527 @default.
- W1796149648 cites W2113257799 @default.
- W1796149648 cites W2114018515 @default.
- W1796149648 cites W2116311105 @default.
- W1796149648 cites W2117663940 @default.
- W1796149648 cites W2120327449 @default.
- W1796149648 cites W2121678235 @default.
- W1796149648 cites W2122896223 @default.
- W1796149648 cites W2123429050 @default.
- W1796149648 cites W2125055052 @default.
- W1796149648 cites W2126401056 @default.
- W1796149648 cites W2128618690 @default.
- W1796149648 cites W2131415053 @default.
- W1796149648 cites W2135173838 @default.
- W1796149648 cites W2138092999 @default.
- W1796149648 cites W2141447814 @default.
- W1796149648 cites W2147781143 @default.
- W1796149648 cites W2149240084 @default.
- W1796149648 cites W2149580110 @default.
- W1796149648 cites W2159898187 @default.
- W1796149648 cites W2161689902 @default.
- W1796149648 cites W2162916889 @default.
- W1796149648 cites W2165387720 @default.
- W1796149648 cites W2169356885 @default.
- W1796149648 cites W2171056452 @default.
- W1796149648 doi "https://doi.org/10.1523/jneurosci.1382-15.2015" @default.
- W1796149648 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4540794" @default.
- W1796149648 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/26290231" @default.
- W1796149648 hasPublicationYear "2015" @default.
- W1796149648 type Work @default.
- W1796149648 sameAs 1796149648 @default.
- W1796149648 citedByCount "81" @default.
- W1796149648 countsByYear W17961496482015 @default.
- W1796149648 countsByYear W17961496482016 @default.
- W1796149648 countsByYear W17961496482017 @default.
- W1796149648 countsByYear W17961496482018 @default.
- W1796149648 countsByYear W17961496482019 @default.
- W1796149648 countsByYear W17961496482020 @default.
- W1796149648 countsByYear W17961496482021 @default.
- W1796149648 countsByYear W17961496482022 @default.
- W1796149648 countsByYear W17961496482023 @default.
- W1796149648 crossrefType "journal-article" @default.
- W1796149648 hasAuthorship W1796149648A5016719332 @default.
- W1796149648 hasAuthorship W1796149648A5021358582 @default.
- W1796149648 hasAuthorship W1796149648A5051039296 @default.
- W1796149648 hasAuthorship W1796149648A5086852785 @default.
- W1796149648 hasBestOaLocation W17961496481 @default.
- W1796149648 hasConcept C11054436 @default.
- W1796149648 hasConcept C151730666 @default.
- W1796149648 hasConcept C153050134 @default.
- W1796149648 hasConcept C15744967 @default.
- W1796149648 hasConcept C169760540 @default.