Matches in SemOpenAlex for { <https://semopenalex.org/work/W1797441772> ?p ?o ?g. }
- W1797441772 endingPage "55" @default.
- W1797441772 startingPage "45" @default.
- W1797441772 abstract "The kernel discriminant analysis (KDA), an extension of the linear discriminant analysis (LDA) and null space-based LDA into the kernel space, generally provides good pattern recognition (PR) performance for both small sample size (SSS) and non-SSS PR problems. Due to the eigen-decomposition technique adopted, however, the original scheme for the feature extraction with the KDA suffers from a high complexity burden. In this paper, we derive a transformation of the KDA into a linear equation problem, and propose a novel scheme for the feature extraction with the KDA. The proposed scheme is shown to provide us with a reduction of complexity without degradation of PR performance. In addition, to enhance the PR performance further, we address the incorporation of regularization into the proposed scheme." @default.
- W1797441772 created "2016-06-24" @default.
- W1797441772 creator A5044532196 @default.
- W1797441772 creator A5082599285 @default.
- W1797441772 creator A5087023232 @default.
- W1797441772 creator A5089138085 @default.
- W1797441772 date "2016-02-01" @default.
- W1797441772 modified "2023-09-26" @default.
- W1797441772 title "A computationally efficient scheme for feature extraction with kernel discriminant analysis" @default.
- W1797441772 cites W1985809919 @default.
- W1797441772 cites W1990381576 @default.
- W1797441772 cites W1998792313 @default.
- W1797441772 cites W2001619934 @default.
- W1797441772 cites W2004834267 @default.
- W1797441772 cites W2027630121 @default.
- W1797441772 cites W2027681681 @default.
- W1797441772 cites W2041657594 @default.
- W1797441772 cites W2047278710 @default.
- W1797441772 cites W2072473369 @default.
- W1797441772 cites W2079130430 @default.
- W1797441772 cites W2088900896 @default.
- W1797441772 cites W2107542203 @default.
- W1797441772 cites W2110652811 @default.
- W1797441772 cites W2113300854 @default.
- W1797441772 cites W2121647436 @default.
- W1797441772 cites W2122034878 @default.
- W1797441772 cites W2145527806 @default.
- W1797441772 cites W2146820706 @default.
- W1797441772 cites W2146993988 @default.
- W1797441772 cites W2149614431 @default.
- W1797441772 cites W2159748429 @default.
- W1797441772 cites W40177797 @default.
- W1797441772 cites W4240959780 @default.
- W1797441772 doi "https://doi.org/10.1016/j.patcog.2015.08.021" @default.
- W1797441772 hasPublicationYear "2016" @default.
- W1797441772 type Work @default.
- W1797441772 sameAs 1797441772 @default.
- W1797441772 citedByCount "20" @default.
- W1797441772 countsByYear W17974417722016 @default.
- W1797441772 countsByYear W17974417722017 @default.
- W1797441772 countsByYear W17974417722018 @default.
- W1797441772 countsByYear W17974417722019 @default.
- W1797441772 countsByYear W17974417722020 @default.
- W1797441772 countsByYear W17974417722021 @default.
- W1797441772 crossrefType "journal-article" @default.
- W1797441772 hasAuthorship W1797441772A5044532196 @default.
- W1797441772 hasAuthorship W1797441772A5082599285 @default.
- W1797441772 hasAuthorship W1797441772A5087023232 @default.
- W1797441772 hasAuthorship W1797441772A5089138085 @default.
- W1797441772 hasConcept C104500394 @default.
- W1797441772 hasConcept C11413529 @default.
- W1797441772 hasConcept C114614502 @default.
- W1797441772 hasConcept C122280245 @default.
- W1797441772 hasConcept C12267149 @default.
- W1797441772 hasConcept C153180895 @default.
- W1797441772 hasConcept C154945302 @default.
- W1797441772 hasConcept C181367576 @default.
- W1797441772 hasConcept C182335926 @default.
- W1797441772 hasConcept C195699287 @default.
- W1797441772 hasConcept C2776135515 @default.
- W1797441772 hasConcept C31510193 @default.
- W1797441772 hasConcept C33923547 @default.
- W1797441772 hasConcept C41008148 @default.
- W1797441772 hasConcept C52622490 @default.
- W1797441772 hasConcept C69738355 @default.
- W1797441772 hasConcept C74193536 @default.
- W1797441772 hasConcept C78397625 @default.
- W1797441772 hasConceptScore W1797441772C104500394 @default.
- W1797441772 hasConceptScore W1797441772C11413529 @default.
- W1797441772 hasConceptScore W1797441772C114614502 @default.
- W1797441772 hasConceptScore W1797441772C122280245 @default.
- W1797441772 hasConceptScore W1797441772C12267149 @default.
- W1797441772 hasConceptScore W1797441772C153180895 @default.
- W1797441772 hasConceptScore W1797441772C154945302 @default.
- W1797441772 hasConceptScore W1797441772C181367576 @default.
- W1797441772 hasConceptScore W1797441772C182335926 @default.
- W1797441772 hasConceptScore W1797441772C195699287 @default.
- W1797441772 hasConceptScore W1797441772C2776135515 @default.
- W1797441772 hasConceptScore W1797441772C31510193 @default.
- W1797441772 hasConceptScore W1797441772C33923547 @default.
- W1797441772 hasConceptScore W1797441772C41008148 @default.
- W1797441772 hasConceptScore W1797441772C52622490 @default.
- W1797441772 hasConceptScore W1797441772C69738355 @default.
- W1797441772 hasConceptScore W1797441772C74193536 @default.
- W1797441772 hasConceptScore W1797441772C78397625 @default.
- W1797441772 hasLocation W17974417721 @default.
- W1797441772 hasOpenAccess W1797441772 @default.
- W1797441772 hasPrimaryLocation W17974417721 @default.
- W1797441772 hasRelatedWork W2086055175 @default.
- W1797441772 hasRelatedWork W2108806452 @default.
- W1797441772 hasRelatedWork W2129407254 @default.
- W1797441772 hasRelatedWork W2135267219 @default.
- W1797441772 hasRelatedWork W2145426848 @default.
- W1797441772 hasRelatedWork W2166834727 @default.
- W1797441772 hasRelatedWork W2354349698 @default.
- W1797441772 hasRelatedWork W2365801610 @default.
- W1797441772 hasRelatedWork W2371083411 @default.
- W1797441772 hasRelatedWork W2386228546 @default.