Matches in SemOpenAlex for { <https://semopenalex.org/work/W1799807750> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W1799807750 endingPage "1232" @default.
- W1799807750 startingPage "1229" @default.
- W1799807750 abstract "The large amount of digital data requests for scalable tools like efficient clustering algorithms. Many algorithms for large data sets request linear separability in an Euclidean space. Kernel approaches can capture the non-linear structure but do not scale well for large data sets. Alternatively, data are often represented implicitly by dissimilarities like for protein sequences, whose methods also often do not scale to large problems. We propose a single algorithm for both type of data, based on a batch approximation of relational soft competitive learning, termed fast generic soft-competitive learning. The algorithm has linear computational and memory requirements and performs favorable to traditional techniques 1." @default.
- W1799807750 created "2016-06-24" @default.
- W1799807750 creator A5004196006 @default.
- W1799807750 creator A5064646650 @default.
- W1799807750 creator A5091180862 @default.
- W1799807750 creator A5091764838 @default.
- W1799807750 date "2012-11-01" @default.
- W1799807750 modified "2023-09-25" @default.
- W1799807750 title "Fast approximated relational and kernel clustering" @default.
- W1799807750 cites W1480708938 @default.
- W1799807750 cites W1971853424 @default.
- W1799807750 cites W2000278525 @default.
- W1799807750 cites W2009077846 @default.
- W1799807750 cites W2010859912 @default.
- W1799807750 cites W2011430131 @default.
- W1799807750 cites W203994284 @default.
- W1799807750 cites W2047244756 @default.
- W1799807750 cites W2059651397 @default.
- W1799807750 cites W2107025582 @default.
- W1799807750 cites W2112545207 @default.
- W1799807750 cites W2120630118 @default.
- W1799807750 cites W2155074104 @default.
- W1799807750 cites W2165232124 @default.
- W1799807750 cites W2166322089 @default.
- W1799807750 cites W3145123565 @default.
- W1799807750 hasPublicationYear "2012" @default.
- W1799807750 type Work @default.
- W1799807750 sameAs 1799807750 @default.
- W1799807750 citedByCount "4" @default.
- W1799807750 countsByYear W17998077502015 @default.
- W1799807750 countsByYear W17998077502016 @default.
- W1799807750 countsByYear W17998077502017 @default.
- W1799807750 crossrefType "proceedings-article" @default.
- W1799807750 hasAuthorship W1799807750A5004196006 @default.
- W1799807750 hasAuthorship W1799807750A5064646650 @default.
- W1799807750 hasAuthorship W1799807750A5091180862 @default.
- W1799807750 hasAuthorship W1799807750A5091764838 @default.
- W1799807750 hasConcept C11413529 @default.
- W1799807750 hasConcept C118615104 @default.
- W1799807750 hasConcept C124101348 @default.
- W1799807750 hasConcept C154945302 @default.
- W1799807750 hasConcept C33923547 @default.
- W1799807750 hasConcept C41008148 @default.
- W1799807750 hasConcept C48044578 @default.
- W1799807750 hasConcept C5655090 @default.
- W1799807750 hasConcept C73555534 @default.
- W1799807750 hasConcept C74193536 @default.
- W1799807750 hasConcept C77088390 @default.
- W1799807750 hasConcept C80444323 @default.
- W1799807750 hasConceptScore W1799807750C11413529 @default.
- W1799807750 hasConceptScore W1799807750C118615104 @default.
- W1799807750 hasConceptScore W1799807750C124101348 @default.
- W1799807750 hasConceptScore W1799807750C154945302 @default.
- W1799807750 hasConceptScore W1799807750C33923547 @default.
- W1799807750 hasConceptScore W1799807750C41008148 @default.
- W1799807750 hasConceptScore W1799807750C48044578 @default.
- W1799807750 hasConceptScore W1799807750C5655090 @default.
- W1799807750 hasConceptScore W1799807750C73555534 @default.
- W1799807750 hasConceptScore W1799807750C74193536 @default.
- W1799807750 hasConceptScore W1799807750C77088390 @default.
- W1799807750 hasConceptScore W1799807750C80444323 @default.
- W1799807750 hasLocation W17998077501 @default.
- W1799807750 hasOpenAccess W1799807750 @default.
- W1799807750 hasPrimaryLocation W17998077501 @default.
- W1799807750 hasRelatedWork W1992829499 @default.
- W1799807750 hasRelatedWork W2042182792 @default.
- W1799807750 hasRelatedWork W2071811170 @default.
- W1799807750 hasRelatedWork W2112545207 @default.
- W1799807750 hasRelatedWork W2121410881 @default.
- W1799807750 hasRelatedWork W2139691084 @default.
- W1799807750 hasRelatedWork W2256168090 @default.
- W1799807750 hasRelatedWork W2360976334 @default.
- W1799807750 hasRelatedWork W2374040847 @default.
- W1799807750 hasRelatedWork W2535206775 @default.
- W1799807750 hasRelatedWork W2559832977 @default.
- W1799807750 hasRelatedWork W2560185252 @default.
- W1799807750 hasRelatedWork W2560771718 @default.
- W1799807750 hasRelatedWork W2575689894 @default.
- W1799807750 hasRelatedWork W2791961904 @default.
- W1799807750 hasRelatedWork W2792464796 @default.
- W1799807750 hasRelatedWork W2798981184 @default.
- W1799807750 hasRelatedWork W2807855560 @default.
- W1799807750 hasRelatedWork W2921127954 @default.
- W1799807750 hasRelatedWork W3108548045 @default.
- W1799807750 isParatext "false" @default.
- W1799807750 isRetracted "false" @default.
- W1799807750 magId "1799807750" @default.
- W1799807750 workType "article" @default.