Matches in SemOpenAlex for { <https://semopenalex.org/work/W1802147758> ?p ?o ?g. }
- W1802147758 endingPage "1130" @default.
- W1802147758 startingPage "1123" @default.
- W1802147758 abstract "Most patients with advanced systolic dysfunction who are assessed for a left ventricular assist device (LVAD) also have some degree of right ventricular (RV) dysfunction. Hence, RV failure (RVF) remains a common complication of LVAD placement. Severe RVF after LVAD implantation is associated with increased peri-operative mortality and length of stay and can lead to coagulopathy, altered drug metabolism, worsening nutritional status, diuretic resistance, and poor quality of life. However, current medical and surgical treatment options for RVF are limited and often result in significant impairments in quality of life. There has been continuing interest in developing risk models for RVF before LVAD implantation. This report reviews the anatomy and physiology of the RV and how it changes in the setting of LVAD support. We will discuss proposed mechanisms and describe biochemical, echocardiographic, and hemodynamic predictors of RVF in LVAD patients. We will describe management strategies for reducing and managing RVF. Finally, we will discuss the increasingly recognized and difficult to manage entity of chronic RVF after LVAD placement and describe opportunities for future research. Most patients with advanced systolic dysfunction who are assessed for a left ventricular assist device (LVAD) also have some degree of right ventricular (RV) dysfunction. Hence, RV failure (RVF) remains a common complication of LVAD placement. Severe RVF after LVAD implantation is associated with increased peri-operative mortality and length of stay and can lead to coagulopathy, altered drug metabolism, worsening nutritional status, diuretic resistance, and poor quality of life. However, current medical and surgical treatment options for RVF are limited and often result in significant impairments in quality of life. There has been continuing interest in developing risk models for RVF before LVAD implantation. This report reviews the anatomy and physiology of the RV and how it changes in the setting of LVAD support. We will discuss proposed mechanisms and describe biochemical, echocardiographic, and hemodynamic predictors of RVF in LVAD patients. We will describe management strategies for reducing and managing RVF. Finally, we will discuss the increasingly recognized and difficult to manage entity of chronic RVF after LVAD placement and describe opportunities for future research. Left ventricular (LV) assist devices (LVADs) are an increasingly common therapy for advanced heart failure. Most patients with advanced LV dysfunction assessed for an LVAD also have some degree of right ventricular (RV) dysfunction. As a consequence, RV failure (RVF) complicates 10% to 40% of LVAD implants.1Dang N.C. Topkara V.K. Mercando M. et al.Right heart failure after left ventricular assist device implantation in patients with chronic congestive heart failure.J Heart Lung Transplant. 2006; 25: 1-6Abstract Full Text Full Text PDF PubMed Scopus (384) Google Scholar, 2Patel N.D. Weiss E.S. Schaffer J. et al.Right heart dysfunction after left ventricular assist device implantation: a comparison of the pulsatile HeartMate I and axial-flow HeartMate II devices.Ann Thorac Surg. 2008; 86: 832-840Abstract Full Text Full Text PDF PubMed Scopus (117) Google Scholar, 3Matthews J.C. Koelling T.M. Pagani F.D. et al.The right ventricular failure risk score a pre-operative tool for assessing the risk of right ventricular failure in left ventricular assist device candidates.J Am Coll Cardiol. 2008; 51: 2163-2172Abstract Full Text Full Text PDF PubMed Scopus (560) Google Scholar, 4Kormos R.L. Teuteberg J.J. Pagani F.D. et al.Right ventricular failure in patients with the HeartMate II continuous-flow left ventricular assist device: incidence, risk factors, and effect on outcomes.J Thorac Cardiovasc Surg. 2010; 139: 1316-1324Abstract Full Text Full Text PDF PubMed Scopus (667) Google Scholar, 5Baumwol J. Macdonald P.S. Keogh A.M. et al.Right heart failure and failure to thrive after left ventricular assist device: clinical predictors and outcomes.J Heart Lung Transplant. 2011; 30: 888-895Abstract Full Text Full Text PDF PubMed Scopus (109) Google Scholar During the past several decades, the unique properties of RV function have been recognized not only in heart failure but also in cardiac surgery, pulmonary hypertension, and now LVAD therapy. The RV differs from the LV in anatomy and physiology, often fails in ways distinct from LV failure, and is critical in determining prognosis even when the LV is successfully treated. Acute RVF is characterized by the Interagency Registry for Mechanically Assisted Circulatory Support (INTERMACS) as documented elevations of central venous pressure (CVP) and its manifestations, such as edema, ascites, or worsening hepatic or renal dysfunction (Table 1).6Interagency Registry for Mechanically Assisted Circulatory Support (INTERMACS). Appendix A: Adverse event definitions: adult and pediatric patients (2013). Available at http://www.uab.edu/medicine/intermacs/appendices-4-0/appendix-a-4-0. Accessed September 23, 2014.Google Scholar Severe RVF is described by INTERMACS and most clinical investigators as the need for prolonged post-implant inotropes, inhaled nitric oxide or intravenous vasodilators, or requirement for RV mechanical support. Severe RVF after LVAD implantation is associated with increased peri-operative mortality, prolonged length of stay, and worse survival even after cardiac transplantation.1Dang N.C. Topkara V.K. Mercando M. et al.Right heart failure after left ventricular assist device implantation in patients with chronic congestive heart failure.J Heart Lung Transplant. 2006; 25: 1-6Abstract Full Text Full Text PDF PubMed Scopus (384) Google Scholar, 4Kormos R.L. Teuteberg J.J. Pagani F.D. et al.Right ventricular failure in patients with the HeartMate II continuous-flow left ventricular assist device: incidence, risk factors, and effect on outcomes.J Thorac Cardiovasc Surg. 2010; 139: 1316-1324Abstract Full Text Full Text PDF PubMed Scopus (667) Google Scholar, 5Baumwol J. Macdonald P.S. Keogh A.M. et al.Right heart failure and failure to thrive after left ventricular assist device: clinical predictors and outcomes.J Heart Lung Transplant. 2011; 30: 888-895Abstract Full Text Full Text PDF PubMed Scopus (109) Google Scholar, 7Santambrogio L. Bianchi T. Fuardo M. et al.Right ventricular failure after left ventricular assist device insertion: preoperative risk factors.Interact Cardiovasc Thorac Surg. 2006; 5: 379-382Crossref PubMed Scopus (74) Google Scholar RVF also causes liver, gastrointestinal, and renal congestion, with resulting coagulopathy, altered drug metabolism, malnutrition, diuretic resistance, and poor quality of life.Table 1Interagency Registry for Mechanically Assisted Circulatory Support Definition of Right Ventricular FailureRVF definitionSymptoms or findings of persistent RVF characterized by both of the following:•Elevated CVP documented by:○Right atrial pressure >16 mm Hg on right heart catheterization○Significantly dilated inferior vena cava with no inspiratory variation on echocardiography○Elevated jugular venous pressure•Manifestations of elevated CVP characterized by:○Peripheral edema (≥2+)○Ascites or hepatomegaly on exam or diagnostic imaging○Laboratory evidence of worsening hepatic (total bilirubin >2.0 mg/dl) or renal dysfunction (creatinine >2.0 mg/dl)Severity ScaleMildPatient meets both criteria for RVF plus:● Post-implant inotropes, inhaled nitric oxide or intravenous vasodilators not continued beyond post-op day 7 after VAD implantAND● No inotropes continued beyond post-op Day 7 after VAD implantModeratePatient meets both criteria for RVF plus:•Post-implant inotropes, inhaled nitric oxide or intravenous vasodilators continued beyond post-op Day 7 and up to post-op Day 14 after VAD implantSeverePatient meets both criteria for RVF plus:•CVP or right atrial pressure >16 mm HgAND•Prolonged post-implant inotropes, inhaled nitric oxide or intravenous vasodilators continued beyond post-op Day 14 after VAD implantSevere-AcutePatient meets both criteria for RVF plus:•CVP or right atrial pressure >16 mmHgAND•Need for right ventricular assist device at any time after VAD implantOR•Death during VAD implants hospitalization with RVF as primary causeCVP, central venous pressure; RVF, right ventricular failure; VAD, ventricular assist device. Open table in a new tab CVP, central venous pressure; RVF, right ventricular failure; VAD, ventricular assist device. The RV is anatomically composed of 3 portions: the inlet (tricuspid valve, chordae tendineae, and papillary muscles), the body, and the outflow tract.8Haddad F. Hunt S.A. Rosenthal D.N. Murphy D.J. Right ventricular function in cardiovascular disease, part I: Anatomy, physiology, aging, and functional assessment of the right ventricle.Circulation. 2008; 117: 1436-1448Crossref PubMed Scopus (1055) Google Scholar The RV myocardium has 2 layers. Superficial fibers are arranged circumferentially running parallel to the atrioventricular groove and continue into the LV superficial fibers.9Ho S.Y. Nihoyannopoulos P. Anatomy, echocardiography, and normal right ventricular dimensions.Heart. 2006; 92 (i2–i13)Google Scholar, 10Dell’Italia L.J. The right ventricle: anatomy, physiology, and clinical importance.Curr Probl Cardiol. 1991; 16: 653-720Abstract Full Text PDF PubMed Scopus (246) Google Scholar The deep muscle fibers are aligned longitudinally base to apex. This differs from the LV, where oblique fibers are superficial, with longitudinal fibers in the subendocardium and circumferential fibers in between. These anatomic differences reflect the distinct physiologic functions of the RV. The RV functions to maintain low systemic venous pressure, provide pulmonary circulation, and adequately fill the LV. In contrast to the high-pressure LV and systemic circulation, the RV and pulmonary circulation are a low-pressure, low-resistance, and highly compliant system. Therefore, the RV is exquisitely sensitive to afterload which is measured clinically as pulmonary vascular resistance (PVR).11MacNee W. Pathophysiology of cor pulmonale in chronic obstructive pulmonary disease: part one.Am J Respir Crit Care Med. 1994; 150: 833-852Crossref PubMed Scopus (340) Google Scholar, 12Chin K.M. Kim N.H. Rubin L.J. The right ventricle in pulmonary hypertension.Coron Artery Dis. 2005; 16: 13-18Crossref PubMed Scopus (335) Google Scholar RV performance is also influenced by ventricular interdependence, whereby alterations of one ventricle affect the size, shape, and function of the other due to their close anatomic association.13Santamore W.P. Dell’Italia L.J. Ventricular interdependence: significant left ventricular contributions to right ventricular systolic function.Prog Cardiovasc Dis. 1998; 40: 289-308Abstract Full Text PDF PubMed Scopus (408) Google Scholar As a result, 20% to 40% of RV output results from LV contraction.13Santamore W.P. Dell’Italia L.J. Ventricular interdependence: significant left ventricular contributions to right ventricular systolic function.Prog Cardiovasc Dis. 1998; 40: 289-308Abstract Full Text PDF PubMed Scopus (408) Google Scholar Systolic ventricular interdependence is primarily mediated through the interventricular septum (IVS) and diastolic interdependence through the pericardium.13Santamore W.P. Dell’Italia L.J. Ventricular interdependence: significant left ventricular contributions to right ventricular systolic function.Prog Cardiovasc Dis. 1998; 40: 289-308Abstract Full Text PDF PubMed Scopus (408) Google Scholar, 14Feneley M.P. Gavaghan T.P. Baron D.W. Branson J.A. Roy P.R. Morgan J.J. Contribution of left ventricular contraction to the generation of right ventricular systolic pressure in the human heart.Circulation. 1985; 71: 473-480Crossref PubMed Scopus (106) Google Scholar, 15Klima U.P. Lee M.Y. Guerrero J.L. et al.Determinants of maximal right ventricular function: role of septal shifts.J Thorac Cardiovasc Surg. 2002; 123: 72-80Abstract Full Text Full Text PDF PubMed Scopus (71) Google Scholar Interplay between the ventricles changes in the setting of an LVAD. As the LVAD decompresses the LV, and reduces LV end-diastolic pressure, pulmonary artery pressure (PAP) should decrease, resulting in improved RV function. However, multiple mechanisms can combine to cause RVF after LVAD implantation. Increased cardiac output from the LVAD increases venous return to the RV, potentially worsening pre-existing RVF.16Farrar D.J. Compton P.G. Hershon J.J. et al.Right heart interaction with the mechanically assisted left heart.World J. Surg. 1985; 9: 89-102Crossref PubMed Scopus (109) Google Scholar Excessive leftward shift of the IVS, particularly with overly aggressive LV decompression with continuous-flow (CF) LVADs, may also decrease septal contribution to RV contraction, leading to RVF.17Farrar D.J. Ventricular interactions during mechanical circulatory support.Semin Thorac Cardiovasc Surg. 1994; 6: 163-168PubMed Google Scholar, 18Moon M.R. Bolger A.F. DeAnda A. et al.Septal function during left ventricular unloading.Circulation. 1997; 95: 1320-1327Crossref PubMed Scopus (69) Google Scholar LV unloading from an LVAD typically reduces tricuspid regurgitation (TR) through decreased RV afterload.19Morgan J.A. Paone G. Nemeh H.W. et al.Impact of continuous-flow left ventricular assist device support on right ventricular function.J Heart Lung Transplant. 2013; 32: 398-403Abstract Full Text Full Text PDF PubMed Scopus (80) Google Scholar However, in the setting of an incompetent valve, increased RV volume and tethering of valve leaflets to a leftward-shifted septum can intensify TR. Volume resuscitation during the peri-operative period may also exacerbate RV dilation and TR.20Krishan K. Nair A. Pinney S. et al.Liberal use of tricuspid-valve annuloplasty during left-ventricular assist device implantation.Eur J Cardiothorac Surg. 2012; 41: 213-217Crossref PubMed Scopus (58) Google Scholar Tachyarrhythmias also contribute to RVF. Atrial arrhythmias occur in more than 20% of LVAD patients and double the risk of RVF.21Brisco M. Sundareswaran K. Milano et al.The incidence, risk, and consequences of atrial arrhythmias in patients with continuous-flow left ventricular assist devices.J Card Surg. 2014; 29: 572-580Crossref PubMed Scopus (38) Google Scholar In addition, ventricular fibrillation may quickly cause more than a 30% decrease in LVAD flow.22Cantillon D.J. Saliba W.I. Wazni O.M. et al.Low cardiac output associated with ventricular tachyarrhythmias in continuous-flow LVAD recipients with a concomitant ICD (LoCo VT Study).J Heart Lung Transplant. 2014; 33: 318-320Abstract Full Text Full Text PDF PubMed Scopus (26) Google Scholar Finally, the same pathologic processes causing LV dysfunction may affect the RV.23Oliveira G.H. Dupont M. Naftel D. et al.Increased need for right ventricular support in patients with chemotherapy-induced cardiomyopathy undergoing mechanical circulatory support: outcomes from the INTERMACS Registry (Interagency Registry for Mechanically Assisted Circulatory Support).J Am Coll Cardiol. 2014; 63: 240-248Crossref PubMed Scopus (79) Google Scholar Treatment options for RVF are limited and include chronic inotropic drugs or biventricular support, both of which significantly impair quality of life. Identifying patients at high risk of RVF improves patient selection and allows for implementing strategies to avoid post-operative RVF. Reflecting this significance, numerous pre-operative risk scores have been developed to quantify the risk of RVF in LVAD candidates (Table 2).1Dang N.C. Topkara V.K. Mercando M. et al.Right heart failure after left ventricular assist device implantation in patients with chronic congestive heart failure.J Heart Lung Transplant. 2006; 25: 1-6Abstract Full Text Full Text PDF PubMed Scopus (384) Google Scholar, 3Matthews J.C. Koelling T.M. Pagani F.D. et al.The right ventricular failure risk score a pre-operative tool for assessing the risk of right ventricular failure in left ventricular assist device candidates.J Am Coll Cardiol. 2008; 51: 2163-2172Abstract Full Text Full Text PDF PubMed Scopus (560) Google Scholar, 4Kormos R.L. Teuteberg J.J. Pagani F.D. et al.Right ventricular failure in patients with the HeartMate II continuous-flow left ventricular assist device: incidence, risk factors, and effect on outcomes.J Thorac Cardiovasc Surg. 2010; 139: 1316-1324Abstract Full Text Full Text PDF PubMed Scopus (667) Google Scholar, 24Ochiai Y. McCarthy P.M. Smedira N.G. et al.Predictors of severe right ventricular failure after implantable left ventricular assist system insertion: analysis of 245 patients.Circulation. 2002; 106: I198-I202PubMed Google Scholar, 25Atluri P. Goldstone A.B. Fairman A.S. et al.Predicting right ventricular failure in the modern, continuous flow left ventricular assist device era.Ann Thorac Surg. 2013; 96: 857-863Abstract Full Text Full Text PDF PubMed Scopus (157) Google Scholar, 26Drakos S.G. Janicki L. Horne B.D. et al.Risk factors predictive of right ventricular failure after left ventricular assist device implantation.Am J Cardiol. 2010; 105: 1030-1035Abstract Full Text Full Text PDF PubMed Scopus (317) Google Scholar, 27Fitzpatrick 3rd, J.F. Frederick J.R. Hsu V.M. et al.Risk score derived from preoperative data analysis predicts the need for biventricular mechanical circulatory support.J Heart Lung Transplant. 2008; 27: 1286-1292Abstract Full Text Full Text PDF PubMed Scopus (316) Google Scholar These risk scores typically were developed by small single-center studies with various definitions of RVF, leading to inconsistent predictors and no single model dependably forecasting RVF. Furthermore, most were developed in predominantly bridge-to-transplant patients with pulsatile devices, not reflecting the current LVAD population. Female gender, nonischemic etiology, prior cardiac surgery, need for an intraaortic balloon pump, inotrope dependency, vasopressor use, and need for mechanical ventilation are all recognized as risk factors for RVF. Biochemical parameters, including elevated serum creatinine, blood urea nitrogen (BUN), bilirubin, and aspartate aminotransferase, also suggest increased risk of RVF. The novel biomarker neutrophil gelatinase-associated lipocalin may be superior to conventional biomarkers and could have future implications in patient selection.28Pronschinske K.B. Qiu S. Wu C. et al.Neutrophil gelatinase-associated lipocalin and cystatin C for the prediction of clinical events in patients with advanced heart failure and after ventricular assist device placement.J Heart Lung Transplant. 2014; 33: 1215-1222Abstract Full Text Full Text PDF PubMed Scopus (24) Google Scholar Several hemodynamic parameters, described in detail below, have similarly been identified as risk factors for RVF.Table 2Multivariable Models Predicting Right Ventricular Failure After Left Ventricular Assist Device PlacementStudy (first author)PatientsVAD type (No.)BTT (%)RVF definitionRVF incidence (%)Risk factorsOchiai24Ochiai Y. McCarthy P.M. Smedira N.G. et al.Predictors of severe right ventricular failure after implantable left ventricular assist system insertion: analysis of 245 patients.Circulation. 2002; 106: I198-I202PubMed Google Scholar245Pulsatile98Need for RVAD9Pre-op circulatory support (OR 5.3)Female gender (OR 4.5)Non-ischemic etiology (OR 3.3)Atluri25Atluri P. Goldstone A.B. Fairman A.S. et al.Predicting right ventricular failure in the modern, continuous flow left ventricular assist device era.Ann Thorac Surg. 2013; 96: 857-863Abstract Full Text Full Text PDF PubMed Scopus (157) Google Scholar218Pulsatile 59%…Need for RVAD23CVP > 15 (OR 2.0)Severe RV dysfunction (OR 3.7)Continuous 41%Intubation (OR 4.3)Severe tricuspid regurgitation (OR 4.1)Heart rate > 100 beats/min (OR 2.0)Dang1Dang N.C. Topkara V.K. Mercando M. et al.Right heart failure after left ventricular assist device implantation in patients with chronic congestive heart failure.J Heart Lung Transplant. 2006; 25: 1-6Abstract Full Text Full Text PDF PubMed Scopus (384) Google Scholar108Pulsatile73Need for RVAD, ≥ 14 days inotropes and/or pulmonary vasodilators39Elevated intra-op CVP (OR 1.2)Drakos26Drakos S.G. Janicki L. Horne B.D. et al.Risk factors predictive of right ventricular failure after left ventricular assist device implantation.Am J Cardiol. 2010; 105: 1030-1035Abstract Full Text Full Text PDF PubMed Scopus (317) Google Scholar175Pulsatile 86%58Need for RVAD, ≥ 14 days inotropes, inhaled nitric oxide ≥ 48 hours44Destination therapy (OR 3.3)Continuous 14%IABP (OR 3.9)Peripheral vascular resistance○1.8-2.7 Wood unit (OR 2.0)○2.8-4.2 Wood unit (OR 3.0)○≥ 4.3 Wood unit (OR 4.1)Inotrope dependency (OR 2.5)Obesity (BMI ≥ 30 kg/m2) (OR 2.0)ACE or ARB (OR 0.5)β-Blocker (OR 1.6)Fitzpatrick27Fitzpatrick 3rd, J.F. Frederick J.R. Hsu V.M. et al.Risk score derived from preoperative data analysis predicts the need for biventricular mechanical circulatory support.J Heart Lung Transplant. 2008; 27: 1286-1292Abstract Full Text Full Text PDF PubMed Scopus (316) Google Scholar266Pulsatile 98%…Need for RVAD37Cardiac index ≤2.2 liters/min/m2 (OR 5.7)RVSWI ≤0.25 mm Hg/liters/m2 (OR 5.1)Severe pre-op RV dysfunction (OR 5.0)Pre-op creatinine ≥1.9 mg/dl(OR 4.8) Previous cardiac surgery(OR 4.5) SBP ≤96 mm Hg (OR 2.9)Continuous 2%Matthews3Matthews J.C. Koelling T.M. Pagani F.D. et al.The right ventricular failure risk score a pre-operative tool for assessing the risk of right ventricular failure in left ventricular assist device candidates.J Am Coll Cardiol. 2008; 51: 2163-2172Abstract Full Text Full Text PDF PubMed Scopus (560) Google Scholar197Pulsatile 86%94Need for RVAD, ≥ 14 days inotropes, inhaled nitric oxide ≥ 48 hours, or hospital discharge on an inotrope25Vasopressor use (OR 3.9)Creatinine ≥ 2.3 mg/dl (OR 2.9)Continuous 14%Bilirubin ≥ 2 mg/dl (OR 2.4)AST ≥ 80 IU/L (OR 2.1)Kormos4Kormos R.L. Teuteberg J.J. Pagani F.D. et al.Right ventricular failure in patients with the HeartMate II continuous-flow left ventricular assist device: incidence, risk factors, and effect on outcomes.J Thorac Cardiovasc Surg. 2010; 139: 1316-1324Abstract Full Text Full Text PDF PubMed Scopus (667) Google Scholar484Continuous100Need for RVAD, ≥ 14 days inotropes, late inotrope support starting > 14 days after implant20CVP/PCWP > 0.63 (OR 2.3)Pre-op ventilator support (OR 5.5)BUN > 39 mg/dl (OR 2.1)ACE, angiotensin-converting enzyme; ARB, angiotensin-receptor blocker; AST, aspartate aminotransferase; BMI, body mass index; BTT, bridge-to-transplant; BUN, blood urea nitrogen; CVP, central venous pressure; IABP, intraaortic balloon pump; OR, odds ratio; PCWP, pulmonary capillary wedge pressure; RV, right ventricle; RVAD, right ventricular assist device; RVF, right ventricular failure; RVSWI, right ventricular stroke work index; SBP, systolic blood pressure; VAD, ventricular assist device. Open table in a new tab ACE, angiotensin-converting enzyme; ARB, angiotensin-receptor blocker; AST, aspartate aminotransferase; BMI, body mass index; BTT, bridge-to-transplant; BUN, blood urea nitrogen; CVP, central venous pressure; IABP, intraaortic balloon pump; OR, odds ratio; PCWP, pulmonary capillary wedge pressure; RV, right ventricle; RVAD, right ventricular assist device; RVF, right ventricular failure; RVSWI, right ventricular stroke work index; SBP, systolic blood pressure; VAD, ventricular assist device. Attempts have been made to predict post-LVAD RVF based on echocardiographic imaging (Table 3).29Puwanant S. Hamilton K.K. Klodell C.T. et al.Tricuspid annular motion as a predictor of severe right ventricular failure after left ventricular assist device implantation.J Heart Lung Transplant. 2008; 27: 1102-1107Abstract Full Text Full Text PDF PubMed Scopus (149) Google Scholar, 30Potapov E. Stepanenko A. Dandel M. et al.Tricuspid incompetence and geometry of the right ventricle as predictors of right ventricular function after implantation of a left ventricular assist device.J Heart Lung Transplant. 2008; 27: 1275-1281Abstract Full Text Full Text PDF PubMed Scopus (181) Google Scholar, 31Kukucka M. Potapov E. Stepanenko A. et al.Right-to-left ventricular end-diastolic diameter ratio and prediction of right ventricular failure with continuous-flow left ventricular assist devices.J Heart Lung Transplant. 2011; 30: 64-69Abstract Full Text Full Text PDF PubMed Scopus (133) Google Scholar, 32Vivo R.P. Cordero-Reyes A.M. Qamar U. et al.Increased right-to-left ventricle diameter ratio is a strong predictor of right ventricular failure after left ventricular assist device.J Heart Lung Transplant. 2013; 32: 792-799Abstract Full Text Full Text PDF PubMed Scopus (75) Google Scholar, 33Kato T.S. Farr M. Schulze P.C. Usefulness of two-dimensional echocardiographic parameters of the left side of the heart to predict right ventricular failure after left ventricular assist device implantation.Am J Cardiol. 2012; 109: 246-251Abstract Full Text Full Text PDF PubMed Scopus (75) Google Scholar, 34Grant A.D. Smedira N.G. Starling R.C. Marwick T.H. Independent and incremental role of quantitative right ventricular evaluation for the prediction of right ventricular failure after left ventricular assist device implantation.J Am Coll Cardiol. 2012; 60: 521-528Abstract Full Text Full Text PDF PubMed Scopus (233) Google Scholar, 35Cameli M. Lisi M. Righini F.M. et al.Speckle tracking echocardiography as a new technique to evaluate right ventricular function in patients with left ventricular assist device therapy.J Heart Lung Transplant. 2013; 32: 424-430Abstract Full Text Full Text PDF PubMed Scopus (64) Google Scholar Imaging is an attractive adjunct to clinical and hemodynamic RV assessment because it is noninvasive but is limited by complex RV geometry, difficulty visualizing it by echocardiography, and its load dependence. Semiquantitative echocardiographic assessment of RV function may be an independent predictor of RVF post-LVAD, but this approach has poor reproducibility.27Fitzpatrick 3rd, J.F. Frederick J.R. Hsu V.M. et al.Risk score derived from preoperative data analysis predicts the need for biventricular mechanical circulatory support.J Heart Lung Transplant. 2008; 27: 1286-1292Abstract Full Text Full Text PDF PubMed Scopus (316) Google Scholar Tricuspid annular motion < 7.5 mm is highly specific for post-LVAD RVF, but with poor sensitivity.29Puwanant S. Hamilton K.K. Klodell C.T. et al.Tricuspid annular motion as a predictor of severe right ventricular failure after left ventricular assist device implantation.J Heart Lung Transplant. 2008; 27: 1102-1107Abstract Full Text Full Text PDF PubMed Scopus (149) Google ScholarTable 3Echocardiographic Variables Predicting Right Ventricular Failure After Left Ventricular Assist Device PlacementStudy (First author)PatientsVAD type (No.)BTT (%)RVF definitionRVF incidence (%)Risk factorsPuwanant29Puwanant S. Hamilton K.K. Klodell C.T. et al.Tricuspid annular motion as a predictor of severe right ventricular failure after left ventricular assist device implantation.J Heart Lung Transplant. 2008; 27: 1102-1107Abstract Full Text Full Text PDF PubMed Scopus (149) Google Scholar33Pulsatile 55%67≥ 14 days inotropes or pulmonary vasodilators33Tricuspid annular motion < 7.5 mmContinuous 45%Potapov30Potapov E. Stepanenko A. Dandel M. et al.Tricuspid incompetence and geometry of the right ventricle as predictors of right ventricular function after implantation of a left ventricular assist device.J Heart Lung Transplant. 2008; 27: 1275-1281Abstract Full Text Full Text PDF PubMed Scopus (181) Google Scholar54Pulsatile 43%Need for RVAD or 2 of: MAP < 55 mm Hg, CVP >16 mm Hg, mixed venous sat < 55%, cardiac index < 2 liters/min/m2, inotropic support > 20 units.17RV short/long axis ratio > 0.6 (OR 4.4)Grade III/IV tricuspid regurgitation (OR 4.7)Continuous 57%Kukucka31Kukucka M. Potapov E. Stepanenko A. et al.Right-to-left ventricular end-diastolic diameter ratio and prediction of right ventricular failure with continuous-flow left ventricular assist devices.J Heart Lung Transplant. 2011; 30: 64-69Abstract Full Text Full Text PDF PubMed Scopus (133) Google Scholar115Continuous…Need for RVAD or 2 of MAP < 55 mm Hg, CVP > 16 mm Hg, mixed venous sat < 55%, cardiac index <2 liters/min/m2, inotropic support >20 units.13TEE measured RV-to-LV end-diastolic diameter ratio (R/L ratio) > 0.72 (OR 11.4)Vivo32Vivo R.P. Cordero-Reyes A.M. Qamar U. et al.Increased right-to-left ventricle diameter ratio is a strong predictor of right ventricular failure after left ventricular assist device.J Heart Lung Transplant. 2013; 32: 792-799Abstract Full Text Full Text PDF PubMed Scopus (75) Google Scholar109Continuous49Need for RVAD, ≥ 14 days inotropes23TTE measured RV-to-LV end-diastolic diameter ratio (R/L ratio) > 0.75 (OR 5.4)Kato33Kato T.S. Farr M. Schulze P.C. Usefulness of two-dimensional echocardiographic parameters of the left side of the heart to predict right ventricular failure after left ventricular assist device implantation.Am J Cardiol. 2012; 109: 246-251Abstract Full Text Full Text PDF PubMed Scopus (75) Google Scholar111Pulsatile 40%…Need for RVAD, ≥ 14 days32LVEDD > 74 mm (OR 0.6)Continuous 60%inotropes, inhaled nitric oxide ≥ 48 hoursLVEF > 22% (OR 2.3)LAD/LVEDD ratio > 0.66 (OR 2.0)Grant34Grant A.D. Smedira N.G. Starling R.C. Marwick T.H. Independent and incremental role of quantitative right ventricular evaluation for the prediction of right ventricular failure after left ventricular assist device implantation.J Am Coll Cardiol. 2012; 60: 521-528Abstract Full Text Full Text PDF PubMed Scopus (233) Google Scholar117Continuous67Need for RVAD, ≥ 14 days inotropes40RV peak longitudinal strain of >-9.6%Cameli35Cameli M. Lisi M. Righini F.M. et" @default.
- W1802147758 created "2016-06-24" @default.
- W1802147758 creator A5068197257 @default.
- W1802147758 creator A5079195586 @default.
- W1802147758 date "2015-09-01" @default.
- W1802147758 modified "2023-10-16" @default.
- W1802147758 title "Right ventricular failure after left ventricular assist devices" @default.
- W1802147758 cites W114693550 @default.
- W1802147758 cites W1562774711 @default.
- W1802147758 cites W1581346531 @default.
- W1802147758 cites W1968334304 @default.
- W1802147758 cites W1968768035 @default.
- W1802147758 cites W1969847513 @default.
- W1802147758 cites W1970163538 @default.
- W1802147758 cites W1975293478 @default.
- W1802147758 cites W1975443612 @default.
- W1802147758 cites W1982861031 @default.
- W1802147758 cites W1991688015 @default.
- W1802147758 cites W1991904075 @default.
- W1802147758 cites W1994383166 @default.
- W1802147758 cites W1999160324 @default.
- W1802147758 cites W2000243921 @default.
- W1802147758 cites W2003063608 @default.
- W1802147758 cites W2006450768 @default.
- W1802147758 cites W2008078341 @default.
- W1802147758 cites W2009010790 @default.
- W1802147758 cites W2015836077 @default.
- W1802147758 cites W2025615595 @default.
- W1802147758 cites W2026141069 @default.
- W1802147758 cites W2028599189 @default.
- W1802147758 cites W2029127954 @default.
- W1802147758 cites W2039169978 @default.
- W1802147758 cites W2044475349 @default.
- W1802147758 cites W2045348703 @default.
- W1802147758 cites W2047685575 @default.
- W1802147758 cites W2052461209 @default.
- W1802147758 cites W2066504880 @default.
- W1802147758 cites W2068121848 @default.
- W1802147758 cites W2070530429 @default.
- W1802147758 cites W2073070051 @default.
- W1802147758 cites W2073077933 @default.
- W1802147758 cites W2074940116 @default.
- W1802147758 cites W2080559529 @default.
- W1802147758 cites W2081452758 @default.
- W1802147758 cites W2084059169 @default.
- W1802147758 cites W2091780550 @default.
- W1802147758 cites W2097518164 @default.
- W1802147758 cites W2098634617 @default.
- W1802147758 cites W2101487587 @default.
- W1802147758 cites W2101651774 @default.
- W1802147758 cites W2107991887 @default.
- W1802147758 cites W2108673984 @default.
- W1802147758 cites W2109423074 @default.
- W1802147758 cites W2110519768 @default.
- W1802147758 cites W2115481096 @default.
- W1802147758 cites W2118674635 @default.
- W1802147758 cites W2119374724 @default.
- W1802147758 cites W2126953085 @default.
- W1802147758 cites W2127951839 @default.
- W1802147758 cites W2135939139 @default.
- W1802147758 cites W2143289682 @default.
- W1802147758 cites W2146315673 @default.
- W1802147758 cites W2153924708 @default.
- W1802147758 cites W2156198808 @default.
- W1802147758 cites W2161971678 @default.
- W1802147758 cites W2162913546 @default.
- W1802147758 cites W2322407211 @default.
- W1802147758 cites W2521467817 @default.
- W1802147758 doi "https://doi.org/10.1016/j.healun.2015.06.015" @default.
- W1802147758 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/26267741" @default.
- W1802147758 hasPublicationYear "2015" @default.
- W1802147758 type Work @default.
- W1802147758 sameAs 1802147758 @default.
- W1802147758 citedByCount "287" @default.
- W1802147758 countsByYear W18021477582014 @default.
- W1802147758 countsByYear W18021477582015 @default.
- W1802147758 countsByYear W18021477582016 @default.
- W1802147758 countsByYear W18021477582017 @default.
- W1802147758 countsByYear W18021477582018 @default.
- W1802147758 countsByYear W18021477582019 @default.
- W1802147758 countsByYear W18021477582020 @default.
- W1802147758 countsByYear W18021477582021 @default.
- W1802147758 countsByYear W18021477582022 @default.
- W1802147758 countsByYear W18021477582023 @default.
- W1802147758 crossrefType "journal-article" @default.
- W1802147758 hasAuthorship W1802147758A5068197257 @default.
- W1802147758 hasAuthorship W1802147758A5079195586 @default.
- W1802147758 hasBestOaLocation W18021477581 @default.
- W1802147758 hasConcept C126322002 @default.
- W1802147758 hasConcept C164705383 @default.
- W1802147758 hasConcept C2778198053 @default.
- W1802147758 hasConcept C2910414618 @default.
- W1802147758 hasConcept C71924100 @default.
- W1802147758 hasConceptScore W1802147758C126322002 @default.
- W1802147758 hasConceptScore W1802147758C164705383 @default.
- W1802147758 hasConceptScore W1802147758C2778198053 @default.
- W1802147758 hasConceptScore W1802147758C2910414618 @default.
- W1802147758 hasConceptScore W1802147758C71924100 @default.