Matches in SemOpenAlex for { <https://semopenalex.org/work/W1803500741> ?p ?o ?g. }
Showing items 1 to 66 of
66
with 100 items per page.
- W1803500741 endingPage "2938" @default.
- W1803500741 startingPage "2929" @default.
- W1803500741 abstract "We show that if <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper X> <mml:semantics> <mml:mi>X</mml:mi> <mml:annotation encoding=application/x-tex>X</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a rearrangement invariant space on <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=left-bracket 0 comma 1 right-bracket> <mml:semantics> <mml:mrow> <mml:mo stretchy=false>[</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mn>1</mml:mn> <mml:mo stretchy=false>]</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>[0, 1]</mml:annotation> </mml:semantics> </mml:math> </inline-formula> that is an interpolation space between <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper L 1> <mml:semantics> <mml:msub> <mml:mi>L</mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mn>1</mml:mn> </mml:mrow> </mml:msub> <mml:annotation encoding=application/x-tex>L_{1}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper L Subscript normal infinity> <mml:semantics> <mml:msub> <mml:mi>L</mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=normal>∞<!-- ∞ --></mml:mi> </mml:mrow> </mml:msub> <mml:annotation encoding=application/x-tex>L_{infty }</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and for which we have only a one-sided estimate of the Boyd index <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=alpha left-parenthesis upper X right-parenthesis greater-than 1 slash p comma 1 greater-than p greater-than normal infinity> <mml:semantics> <mml:mrow> <mml:mi>α<!-- α --></mml:mi> <mml:mo stretchy=false>(</mml:mo> <mml:mi>X</mml:mi> <mml:mo stretchy=false>)</mml:mo> <mml:mo>></mml:mo> <mml:mn>1</mml:mn> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>p</mml:mi> <mml:mo>,</mml:mo> <mml:mn>1</mml:mn> <mml:mo>></mml:mo> <mml:mi>p</mml:mi> <mml:mo>></mml:mo> <mml:mi mathvariant=normal>∞<!-- ∞ --></mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>alpha (X) > 1/p, 1 > p > infty</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, then <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper X> <mml:semantics> <mml:mi>X</mml:mi> <mml:annotation encoding=application/x-tex>X</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is an interpolation space between <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper L 1> <mml:semantics> <mml:msub> <mml:mi>L</mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mn>1</mml:mn> </mml:mrow> </mml:msub> <mml:annotation encoding=application/x-tex>L_{1}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper L Subscript p> <mml:semantics> <mml:msub> <mml:mi>L</mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi>p</mml:mi> </mml:mrow> </mml:msub> <mml:annotation encoding=application/x-tex>L_{p}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. This gives a positive answer for a question posed by Semenov. We also present the one-sided interpolation theorem about operators of strong type <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=left-parenthesis 1 comma 1 right-parenthesis> <mml:semantics> <mml:mrow> <mml:mo stretchy=false>(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>,</mml:mo> <mml:mn>1</mml:mn> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>(1, 1)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and weak type <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=left-parenthesis p comma p right-parenthesis comma 1 greater-than p greater-than normal infinity> <mml:semantics> <mml:mrow> <mml:mo stretchy=false>(</mml:mo> <mml:mi>p</mml:mi> <mml:mo>,</mml:mo> <mml:mi>p</mml:mi> <mml:mo stretchy=false>)</mml:mo> <mml:mo>,</mml:mo> <mml:mn>1</mml:mn> <mml:mo>></mml:mo> <mml:mi>p</mml:mi> <mml:mo>></mml:mo> <mml:mi mathvariant=normal>∞<!-- ∞ --></mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>(p, p), 1 > p > infty</mml:annotation> </mml:semantics> </mml:math> </inline-formula>." @default.
- W1803500741 created "2016-06-24" @default.
- W1803500741 creator A5076634084 @default.
- W1803500741 creator A5088872574 @default.
- W1803500741 date "2004-05-21" @default.
- W1803500741 modified "2023-10-12" @default.
- W1803500741 title "Interpolation between 𝐿₁ and 𝐿_{𝑝},1<𝑝<∞" @default.
- W1803500741 cites W116944765 @default.
- W1803500741 cites W1969582052 @default.
- W1803500741 cites W1997595765 @default.
- W1803500741 cites W2006408514 @default.
- W1803500741 cites W2041021502 @default.
- W1803500741 cites W2053272602 @default.
- W1803500741 cites W2083020018 @default.
- W1803500741 cites W4232806712 @default.
- W1803500741 cites W4232853762 @default.
- W1803500741 cites W790885441 @default.
- W1803500741 doi "https://doi.org/10.1090/s0002-9939-04-07425-8" @default.
- W1803500741 hasPublicationYear "2004" @default.
- W1803500741 type Work @default.
- W1803500741 sameAs 1803500741 @default.
- W1803500741 citedByCount "17" @default.
- W1803500741 countsByYear W18035007412012 @default.
- W1803500741 countsByYear W18035007412013 @default.
- W1803500741 countsByYear W18035007412014 @default.
- W1803500741 countsByYear W18035007412015 @default.
- W1803500741 countsByYear W18035007412017 @default.
- W1803500741 countsByYear W18035007412018 @default.
- W1803500741 countsByYear W18035007412019 @default.
- W1803500741 countsByYear W18035007412020 @default.
- W1803500741 countsByYear W18035007412021 @default.
- W1803500741 countsByYear W18035007412022 @default.
- W1803500741 crossrefType "journal-article" @default.
- W1803500741 hasAuthorship W1803500741A5076634084 @default.
- W1803500741 hasAuthorship W1803500741A5088872574 @default.
- W1803500741 hasBestOaLocation W18035007411 @default.
- W1803500741 hasConcept C11413529 @default.
- W1803500741 hasConcept C154945302 @default.
- W1803500741 hasConcept C2776321320 @default.
- W1803500741 hasConcept C41008148 @default.
- W1803500741 hasConceptScore W1803500741C11413529 @default.
- W1803500741 hasConceptScore W1803500741C154945302 @default.
- W1803500741 hasConceptScore W1803500741C2776321320 @default.
- W1803500741 hasConceptScore W1803500741C41008148 @default.
- W1803500741 hasIssue "10" @default.
- W1803500741 hasLocation W18035007411 @default.
- W1803500741 hasLocation W18035007412 @default.
- W1803500741 hasOpenAccess W1803500741 @default.
- W1803500741 hasPrimaryLocation W18035007411 @default.
- W1803500741 hasRelatedWork W151193258 @default.
- W1803500741 hasRelatedWork W1529400504 @default.
- W1803500741 hasRelatedWork W1871911958 @default.
- W1803500741 hasRelatedWork W1892467659 @default.
- W1803500741 hasRelatedWork W2348710178 @default.
- W1803500741 hasRelatedWork W2808586768 @default.
- W1803500741 hasRelatedWork W2998403542 @default.
- W1803500741 hasRelatedWork W3201926073 @default.
- W1803500741 hasRelatedWork W38394648 @default.
- W1803500741 hasRelatedWork W73525116 @default.
- W1803500741 hasVolume "132" @default.
- W1803500741 isParatext "false" @default.
- W1803500741 isRetracted "false" @default.
- W1803500741 magId "1803500741" @default.
- W1803500741 workType "article" @default.