Matches in SemOpenAlex for { <https://semopenalex.org/work/W1807347157> ?p ?o ?g. }
- W1807347157 endingPage "1210" @default.
- W1807347157 startingPage "1157" @default.
- W1807347157 abstract "We consider learning, from strictly behavioral data, the structure and parameters of linear in uence games (LIGs), a class of parametric graphical games introduced by Irfan and Ortiz (2014). LIGs facilitate causal strategic inference (CSI): Making inferences from causal interventions on stable behavior in strategic settings. Applications include the identification of the most in uential individuals in large (social) networks. Such tasks can also support policy-making analysis. Motivated by the computational work on LIGs, we cast the learning problem as maximum-likelihood estimation (MLE) of a generative model defined by pure-strategy Nash equilibria (PSNE). Our simple formulation uncovers the fundamental interplay between goodness-of-fit and model complexity: good models capture equilibrium behavior within the data while controlling the true number of equilibria, including those unobserved. We provide a generalization bound establishing the sample complexity for MLE in our framework. We propose several algorithms including convex loss minimization (CLM) and sigmoidal approximations. We prove that the number of exact PSNE in LIGs is small, with high probability; thus, CLM is sound. We illustrate our approach on synthetic data and real-world U.S. congressional voting records. We briefly discuss our learning framework's generality and potential applicability to general graphical games." @default.
- W1807347157 created "2016-06-24" @default.
- W1807347157 creator A5038965118 @default.
- W1807347157 creator A5081273303 @default.
- W1807347157 date "2015-01-01" @default.
- W1807347157 modified "2023-09-27" @default.
- W1807347157 title "Learning the structure and parameters of large-population graphical games from behavioral data" @default.
- W1807347157 cites W113002869 @default.
- W1807347157 cites W124742274 @default.
- W1807347157 cites W129412289 @default.
- W1807347157 cites W1504194272 @default.
- W1807347157 cites W1511986666 @default.
- W1807347157 cites W1514726455 @default.
- W1807347157 cites W1520252399 @default.
- W1807347157 cites W1520903655 @default.
- W1807347157 cites W1528676759 @default.
- W1807347157 cites W1541791153 @default.
- W1807347157 cites W1572431862 @default.
- W1807347157 cites W1575346617 @default.
- W1807347157 cites W1586003574 @default.
- W1807347157 cites W1595257688 @default.
- W1807347157 cites W1605188341 @default.
- W1807347157 cites W1609370892 @default.
- W1807347157 cites W1697862064 @default.
- W1807347157 cites W1749992802 @default.
- W1807347157 cites W178376298 @default.
- W1807347157 cites W1856548066 @default.
- W1807347157 cites W1889400262 @default.
- W1807347157 cites W1897619428 @default.
- W1807347157 cites W1948149164 @default.
- W1807347157 cites W1970184655 @default.
- W1807347157 cites W1980497227 @default.
- W1807347157 cites W1987961481 @default.
- W1807347157 cites W1990199628 @default.
- W1807347157 cites W1996816151 @default.
- W1807347157 cites W1997147068 @default.
- W1807347157 cites W1998754086 @default.
- W1807347157 cites W2001717681 @default.
- W1807347157 cites W2006427524 @default.
- W1807347157 cites W2015190299 @default.
- W1807347157 cites W2035649157 @default.
- W1807347157 cites W2041157860 @default.
- W1807347157 cites W2042123098 @default.
- W1807347157 cites W2044667552 @default.
- W1807347157 cites W2054129049 @default.
- W1807347157 cites W2056865275 @default.
- W1807347157 cites W2059901585 @default.
- W1807347157 cites W2061562262 @default.
- W1807347157 cites W2071435255 @default.
- W1807347157 cites W2073926352 @default.
- W1807347157 cites W2076789813 @default.
- W1807347157 cites W2079873320 @default.
- W1807347157 cites W2086344316 @default.
- W1807347157 cites W2097609460 @default.
- W1807347157 cites W2099975670 @default.
- W1807347157 cites W2100236179 @default.
- W1807347157 cites W2101217556 @default.
- W1807347157 cites W2101459331 @default.
- W1807347157 cites W2104690181 @default.
- W1807347157 cites W2111380642 @default.
- W1807347157 cites W2112794046 @default.
- W1807347157 cites W2124140601 @default.
- W1807347157 cites W2128283977 @default.
- W1807347157 cites W2130056990 @default.
- W1807347157 cites W2130698119 @default.
- W1807347157 cites W2132339352 @default.
- W1807347157 cites W2137880275 @default.
- W1807347157 cites W2145147424 @default.
- W1807347157 cites W2145212723 @default.
- W1807347157 cites W2145297839 @default.
- W1807347157 cites W2147544021 @default.
- W1807347157 cites W2148603752 @default.
- W1807347157 cites W2149086825 @default.
- W1807347157 cites W2151128232 @default.
- W1807347157 cites W2153699776 @default.
- W1807347157 cites W2155014708 @default.
- W1807347157 cites W2156288987 @default.
- W1807347157 cites W2160135758 @default.
- W1807347157 cites W2160745863 @default.
- W1807347157 cites W2163166770 @default.
- W1807347157 cites W2164301055 @default.
- W1807347157 cites W2165815429 @default.
- W1807347157 cites W2170744156 @default.
- W1807347157 cites W2207792509 @default.
- W1807347157 cites W2240786853 @default.
- W1807347157 cites W2264897026 @default.
- W1807347157 cites W2292587149 @default.
- W1807347157 cites W2296319761 @default.
- W1807347157 cites W2330024298 @default.
- W1807347157 cites W2338300691 @default.
- W1807347157 cites W2504279184 @default.
- W1807347157 cites W2611291372 @default.
- W1807347157 cites W2799074867 @default.
- W1807347157 cites W2915025928 @default.
- W1807347157 cites W2949567784 @default.
- W1807347157 cites W2949581777 @default.
- W1807347157 cites W2950348070 @default.
- W1807347157 cites W2963500679 @default.