Matches in SemOpenAlex for { <https://semopenalex.org/work/W1807711654> ?p ?o ?g. }
- W1807711654 endingPage "83" @default.
- W1807711654 startingPage "69" @default.
- W1807711654 abstract "Large population biobanks of unrelated individuals have been highly successful in detecting common genetic variants affecting diseases of public health concern. However, they lack the statistical power to detect more modest gene-gene and gene-environment interaction effects or the effects of rare variants for which related individuals are ideally required. In reality, most large population studies will undoubtedly contain sets of undeclared relatives, or pedigrees. Although a crude measure of relatedness might sometimes suffice, having a good estimate of the true pedigree would be much more informative if this could be obtained efficiently. Relatives are more likely to share longer haplotypes around disease susceptibility loci and are hence biologically more informative for rare variants than unrelated cases and controls. Distant relatives are arguably more useful for detecting variants with small effects because they are less likely to share masking environmental effects. Moreover, the identification of relatives enables appropriate adjustments of statistical analyses that typically assume unrelatedness. We propose to exploit an integer linear programming optimisation approach to pedigree learning, which is adapted to find valid pedigrees by imposing appropriate constraints. Our method is not restricted to small pedigrees and is guaranteed to return a maximum likelihood pedigree. With additional constraints, we can also search for multiple high-probability pedigrees and thus account for the inherent uncertainty in any particular pedigree reconstruction. The true pedigree is found very quickly by comparison with other methods when all individuals are observed. Extensions to more complex problems seem feasible." @default.
- W1807711654 created "2016-06-24" @default.
- W1807711654 creator A5022979021 @default.
- W1807711654 creator A5044472640 @default.
- W1807711654 creator A5072819898 @default.
- W1807711654 creator A5078894934 @default.
- W1807711654 date "2012-10-03" @default.
- W1807711654 modified "2023-09-23" @default.
- W1807711654 title "Maximum Likelihood Pedigree Reconstruction Using Integer Linear Programming" @default.
- W1807711654 cites W101128506 @default.
- W1807711654 cites W1530461011 @default.
- W1807711654 cites W1532084124 @default.
- W1807711654 cites W1952912025 @default.
- W1807711654 cites W1970011114 @default.
- W1807711654 cites W1976199557 @default.
- W1807711654 cites W1991944680 @default.
- W1807711654 cites W1993491392 @default.
- W1807711654 cites W1995257333 @default.
- W1807711654 cites W1999015493 @default.
- W1807711654 cites W2003894772 @default.
- W1807711654 cites W2012798676 @default.
- W1807711654 cites W2016936453 @default.
- W1807711654 cites W2021521531 @default.
- W1807711654 cites W2025545941 @default.
- W1807711654 cites W2025865441 @default.
- W1807711654 cites W2026228219 @default.
- W1807711654 cites W2032875771 @default.
- W1807711654 cites W2034344955 @default.
- W1807711654 cites W2041746316 @default.
- W1807711654 cites W2071087740 @default.
- W1807711654 cites W2073891059 @default.
- W1807711654 cites W2075330092 @default.
- W1807711654 cites W2082091753 @default.
- W1807711654 cites W2109716699 @default.
- W1807711654 cites W2122126732 @default.
- W1807711654 cites W2122666877 @default.
- W1807711654 cites W2127766156 @default.
- W1807711654 cites W2139484675 @default.
- W1807711654 cites W2141810183 @default.
- W1807711654 cites W2146585970 @default.
- W1807711654 cites W2150109218 @default.
- W1807711654 cites W2166027220 @default.
- W1807711654 cites W2169611786 @default.
- W1807711654 cites W2170135702 @default.
- W1807711654 cites W2401610261 @default.
- W1807711654 cites W31079649 @default.
- W1807711654 cites W3785181 @default.
- W1807711654 cites W4211177544 @default.
- W1807711654 cites W4302120960 @default.
- W1807711654 doi "https://doi.org/10.1002/gepi.21686" @default.
- W1807711654 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/23034892" @default.
- W1807711654 hasPublicationYear "2012" @default.
- W1807711654 type Work @default.
- W1807711654 sameAs 1807711654 @default.
- W1807711654 citedByCount "76" @default.
- W1807711654 countsByYear W18077116542013 @default.
- W1807711654 countsByYear W18077116542014 @default.
- W1807711654 countsByYear W18077116542015 @default.
- W1807711654 countsByYear W18077116542016 @default.
- W1807711654 countsByYear W18077116542017 @default.
- W1807711654 countsByYear W18077116542018 @default.
- W1807711654 countsByYear W18077116542019 @default.
- W1807711654 countsByYear W18077116542021 @default.
- W1807711654 countsByYear W18077116542023 @default.
- W1807711654 crossrefType "journal-article" @default.
- W1807711654 hasAuthorship W1807711654A5022979021 @default.
- W1807711654 hasAuthorship W1807711654A5044472640 @default.
- W1807711654 hasAuthorship W1807711654A5072819898 @default.
- W1807711654 hasAuthorship W1807711654A5078894934 @default.
- W1807711654 hasConcept C104317684 @default.
- W1807711654 hasConcept C105795698 @default.
- W1807711654 hasConcept C11413529 @default.
- W1807711654 hasConcept C116834253 @default.
- W1807711654 hasConcept C144024400 @default.
- W1807711654 hasConcept C149923435 @default.
- W1807711654 hasConcept C180754005 @default.
- W1807711654 hasConcept C197754878 @default.
- W1807711654 hasConcept C22593422 @default.
- W1807711654 hasConcept C2908647359 @default.
- W1807711654 hasConcept C33923547 @default.
- W1807711654 hasConcept C41008148 @default.
- W1807711654 hasConcept C54355233 @default.
- W1807711654 hasConcept C56086750 @default.
- W1807711654 hasConcept C59822182 @default.
- W1807711654 hasConcept C86803240 @default.
- W1807711654 hasConceptScore W1807711654C104317684 @default.
- W1807711654 hasConceptScore W1807711654C105795698 @default.
- W1807711654 hasConceptScore W1807711654C11413529 @default.
- W1807711654 hasConceptScore W1807711654C116834253 @default.
- W1807711654 hasConceptScore W1807711654C144024400 @default.
- W1807711654 hasConceptScore W1807711654C149923435 @default.
- W1807711654 hasConceptScore W1807711654C180754005 @default.
- W1807711654 hasConceptScore W1807711654C197754878 @default.
- W1807711654 hasConceptScore W1807711654C22593422 @default.
- W1807711654 hasConceptScore W1807711654C2908647359 @default.
- W1807711654 hasConceptScore W1807711654C33923547 @default.
- W1807711654 hasConceptScore W1807711654C41008148 @default.
- W1807711654 hasConceptScore W1807711654C54355233 @default.