Matches in SemOpenAlex for { <https://semopenalex.org/work/W180816917> ?p ?o ?g. }
- W180816917 abstract "This thesis consists of two distinct parts. The first part comprises the first three chapters and is largely of an expository nature. The second part comprises the last three chapters all of which are, to the best of our knowledge, original.In the first part we cover the background material which we shall require in the sequel. Thus Chapter 1 deals with the theory of Kac-Moody algebras and is drawn from two main sources, namely [Kac90] and [BdK90]. Two enlightening examples are given at the end of this chapter.Chapter 2 introduces the notion of the Kac-Moody group functor. This material is drawn largely, but not exclusively, from an extensive body of work on the topic by J. Tits. We give a presentation for Kac-Moody groups over fields and describe some of their properties.In Chapter 3 we give an overview of some results on Kac-Moody groups. First we describe the work of J-Y. Hee generalizing the notion of twisted Chevalley groups to the Kac-Moody situation. We then give an exposition of the work of R.W. Carter and Y. Chen on the automorphisms of complex simply-connected affine Kac-Moody groups arising from extended Cartan matrices and we describe the classification of such automorphisms. In particular, we note that the family of diagonal automorphisms of such groups behave in a manner which has no analogy in the classical theory. We conclude the Chapter with an example demonstrating the limitation of Hee’s results with regards to this type of automorphism.Chapter 4 makes use of the results on Kac-Moody algebras described in §1.5 to extend the results of Hee. Suppose A is a simply-laced extended Cartan matrix and let β(K) be a Kac-Moody group associated to A. In Chapter 4 we extend the results of Hee to the fixed point subgroup, β(K) say, of β(K) under a particular graph-by-diagonal automorphism. We then establish an isomorphism between the subgroup β(K) so obtained and a Kac-Moody group associated to an affine Cartan matrix of type II or III.Thus Chapter 4 contains our main contributions for two reasons. Firstly, it provides a realization of Kac-Moody groups of types II and III in terms of those arising from extended Cartan matrices. More precisely, Propositions 4.4.3, 4.5.6, and 4.6.4 prove the following result." @default.
- W180816917 created "2016-06-24" @default.
- W180816917 creator A5035764317 @default.
- W180816917 date "1992-09-01" @default.
- W180816917 modified "2023-09-26" @default.
- W180816917 title "On some twisted Kac-Moody groups" @default.
- W180816917 cites W145136359 @default.
- W180816917 cites W1507799342 @default.
- W180816917 cites W1528521152 @default.
- W180816917 cites W1581007542 @default.
- W180816917 cites W1590020031 @default.
- W180816917 cites W1642629289 @default.
- W180816917 cites W1963707224 @default.
- W180816917 cites W1967496453 @default.
- W180816917 cites W1979142405 @default.
- W180816917 cites W1987797701 @default.
- W180816917 cites W1997850871 @default.
- W180816917 cites W2010351101 @default.
- W180816917 cites W2040199105 @default.
- W180816917 cites W2042974949 @default.
- W180816917 cites W2048182028 @default.
- W180816917 cites W2048988320 @default.
- W180816917 cites W2062158170 @default.
- W180816917 cites W2070087424 @default.
- W180816917 cites W2089420710 @default.
- W180816917 cites W2094864839 @default.
- W180816917 cites W2323845175 @default.
- W180816917 cites W2572527475 @default.
- W180816917 cites W3022097150 @default.
- W180816917 cites W564943434 @default.
- W180816917 cites W830168149 @default.
- W180816917 cites W2112495993 @default.
- W180816917 hasPublicationYear "1992" @default.
- W180816917 type Work @default.
- W180816917 sameAs 180816917 @default.
- W180816917 citedByCount "1" @default.
- W180816917 crossrefType "dissertation" @default.
- W180816917 hasAuthorship W180816917A5035764317 @default.
- W180816917 hasConcept C111472728 @default.
- W180816917 hasConcept C118712358 @default.
- W180816917 hasConcept C121332964 @default.
- W180816917 hasConcept C124952713 @default.
- W180816917 hasConcept C130367717 @default.
- W180816917 hasConcept C136119220 @default.
- W180816917 hasConcept C138885662 @default.
- W180816917 hasConcept C142362112 @default.
- W180816917 hasConcept C145807718 @default.
- W180816917 hasConcept C156772000 @default.
- W180816917 hasConcept C202444582 @default.
- W180816917 hasConcept C2524010 @default.
- W180816917 hasConcept C2776285698 @default.
- W180816917 hasConcept C2781311116 @default.
- W180816917 hasConcept C33923547 @default.
- W180816917 hasConcept C521332185 @default.
- W180816917 hasConcept C5475112 @default.
- W180816917 hasConcept C62520636 @default.
- W180816917 hasConcept C81999800 @default.
- W180816917 hasConceptScore W180816917C111472728 @default.
- W180816917 hasConceptScore W180816917C118712358 @default.
- W180816917 hasConceptScore W180816917C121332964 @default.
- W180816917 hasConceptScore W180816917C124952713 @default.
- W180816917 hasConceptScore W180816917C130367717 @default.
- W180816917 hasConceptScore W180816917C136119220 @default.
- W180816917 hasConceptScore W180816917C138885662 @default.
- W180816917 hasConceptScore W180816917C142362112 @default.
- W180816917 hasConceptScore W180816917C145807718 @default.
- W180816917 hasConceptScore W180816917C156772000 @default.
- W180816917 hasConceptScore W180816917C202444582 @default.
- W180816917 hasConceptScore W180816917C2524010 @default.
- W180816917 hasConceptScore W180816917C2776285698 @default.
- W180816917 hasConceptScore W180816917C2781311116 @default.
- W180816917 hasConceptScore W180816917C33923547 @default.
- W180816917 hasConceptScore W180816917C521332185 @default.
- W180816917 hasConceptScore W180816917C5475112 @default.
- W180816917 hasConceptScore W180816917C62520636 @default.
- W180816917 hasConceptScore W180816917C81999800 @default.
- W180816917 hasLocation W1808169171 @default.
- W180816917 hasOpenAccess W180816917 @default.
- W180816917 hasPrimaryLocation W1808169171 @default.
- W180816917 hasRelatedWork W1002468037 @default.
- W180816917 hasRelatedWork W116501883 @default.
- W180816917 hasRelatedWork W1527910952 @default.
- W180816917 hasRelatedWork W1555377572 @default.
- W180816917 hasRelatedWork W1587646769 @default.
- W180816917 hasRelatedWork W1596168974 @default.
- W180816917 hasRelatedWork W1655952794 @default.
- W180816917 hasRelatedWork W2003773228 @default.
- W180816917 hasRelatedWork W2055061220 @default.
- W180816917 hasRelatedWork W2184749187 @default.
- W180816917 hasRelatedWork W2221818220 @default.
- W180816917 hasRelatedWork W222467540 @default.
- W180816917 hasRelatedWork W2564051375 @default.
- W180816917 hasRelatedWork W2907193462 @default.
- W180816917 hasRelatedWork W2962737719 @default.
- W180816917 hasRelatedWork W3091947994 @default.
- W180816917 hasRelatedWork W31020623 @default.
- W180816917 hasRelatedWork W3102699470 @default.
- W180816917 hasRelatedWork W3139745322 @default.
- W180816917 hasRelatedWork W2605865852 @default.
- W180816917 isParatext "false" @default.