Matches in SemOpenAlex for { <https://semopenalex.org/work/W1810986334> ?p ?o ?g. }
- W1810986334 abstract "For the general problem of minimizing a convex function over a compact convex domain, we will investigate a simple iterative approximation algorithm based on the method by Frank & Wolfe 1956, that does not need projection steps in order to stay inside the optimization domain. Instead of a projection step, the linearized problem defined by a current subgradient is solved, which gives a step direction that will naturally stay in the domain. Our framework generalizes the sparse greedy algorithm of Frank & Wolfe and its primal-dual analysis by Clarkson 2010 (and the low-rank SDP approach by Hazan 2008) to arbitrary convex domains. We give a convergence proof guaranteeing {epsilon}-small duality gap after O(1/{epsilon}) iterations. The method allows us to understand the sparsity of approximate solutions for any l1-regularized convex optimization problem (and for optimization over the simplex), expressed as a function of the approximation quality. We obtain matching upper and lower bounds of {Theta}(1/{epsilon}) for the sparsity for l1-problems. The same bounds apply to low-rank semidefinite optimization with bounded trace, showing that rank O(1/{epsilon}) is best possible here as well. As another application, we obtain sparse matrices of O(1/{epsilon}) non-zero entries as {epsilon}-approximate solutions when optimizing any convex function over a class of diagonally dominant symmetric matrices. We show that our proposed first-order method also applies to nuclear norm and max-norm matrix optimization problems. For nuclear norm regularized optimization, such as matrix completion and low-rank recovery, we demonstrate the practical efficiency and scalability of our algorithm for large matrix problems, as e.g. the Netflix dataset. For general convex optimization over bounded matrix max-norm, our algorithm is the first with a convergence guarantee, to the best of our knowledge." @default.
- W1810986334 created "2016-06-24" @default.
- W1810986334 creator A5073756389 @default.
- W1810986334 date "2011-08-04" @default.
- W1810986334 modified "2023-09-27" @default.
- W1810986334 title "Convex Optimization without Projection Steps" @default.
- W1810986334 cites W114517082 @default.
- W1810986334 cites W1464850230 @default.
- W1810986334 cites W1492459858 @default.
- W1810986334 cites W1498671329 @default.
- W1810986334 cites W1503221585 @default.
- W1810986334 cites W1509803206 @default.
- W1810986334 cites W1511814458 @default.
- W1810986334 cites W1540529426 @default.
- W1810986334 cites W1552009253 @default.
- W1810986334 cites W1574851760 @default.
- W1810986334 cites W1575641478 @default.
- W1810986334 cites W1599867596 @default.
- W1810986334 cites W1775587472 @default.
- W1810986334 cites W1863732927 @default.
- W1810986334 cites W1920010643 @default.
- W1810986334 cites W1966096622 @default.
- W1810986334 cites W1967921672 @default.
- W1810986334 cites W1976618413 @default.
- W1810986334 cites W1976632974 @default.
- W1810986334 cites W1980147176 @default.
- W1810986334 cites W1985123706 @default.
- W1810986334 cites W1985142965 @default.
- W1810986334 cites W1986554702 @default.
- W1810986334 cites W1986931325 @default.
- W1810986334 cites W1987492370 @default.
- W1810986334 cites W1994520254 @default.
- W1810986334 cites W1998635907 @default.
- W1810986334 cites W2006118023 @default.
- W1810986334 cites W2006822886 @default.
- W1810986334 cites W2007437396 @default.
- W1810986334 cites W2010791033 @default.
- W1810986334 cites W2011359124 @default.
- W1810986334 cites W2016384870 @default.
- W1810986334 cites W2018493294 @default.
- W1810986334 cites W2027197817 @default.
- W1810986334 cites W2028781966 @default.
- W1810986334 cites W2031823405 @default.
- W1810986334 cites W2035815925 @default.
- W1810986334 cites W2040466831 @default.
- W1810986334 cites W2044828368 @default.
- W1810986334 cites W2054141820 @default.
- W1810986334 cites W2059651397 @default.
- W1810986334 cites W2063958549 @default.
- W1810986334 cites W2065238107 @default.
- W1810986334 cites W2085315287 @default.
- W1810986334 cites W2089559088 @default.
- W1810986334 cites W2093545205 @default.
- W1810986334 cites W2099262739 @default.
- W1810986334 cites W2100556411 @default.
- W1810986334 cites W2102138843 @default.
- W1810986334 cites W2103972604 @default.
- W1810986334 cites W2105767123 @default.
- W1810986334 cites W2105864171 @default.
- W1810986334 cites W2109449402 @default.
- W1810986334 cites W2109706083 @default.
- W1810986334 cites W2110096996 @default.
- W1810986334 cites W2113802117 @default.
- W1810986334 cites W2116148865 @default.
- W1810986334 cites W2118550318 @default.
- W1810986334 cites W2121210949 @default.
- W1810986334 cites W2122090912 @default.
- W1810986334 cites W2125493559 @default.
- W1810986334 cites W2126746199 @default.
- W1810986334 cites W2127271355 @default.
- W1810986334 cites W2133629339 @default.
- W1810986334 cites W2134332047 @default.
- W1810986334 cites W2135046866 @default.
- W1810986334 cites W2136885855 @default.
- W1810986334 cites W2138621811 @default.
- W1810986334 cites W2143075842 @default.
- W1810986334 cites W2145962650 @default.
- W1810986334 cites W2146130798 @default.
- W1810986334 cites W2146482778 @default.
- W1810986334 cites W2151450177 @default.
- W1810986334 cites W2154772527 @default.
- W1810986334 cites W2156261289 @default.
- W1810986334 cites W2158231959 @default.
- W1810986334 cites W2160741287 @default.
- W1810986334 cites W2162171343 @default.
- W1810986334 cites W2165395308 @default.
- W1810986334 cites W2167732364 @default.
- W1810986334 cites W2169713291 @default.
- W1810986334 cites W2170551306 @default.
- W1810986334 cites W2296319761 @default.
- W1810986334 cites W2339666411 @default.
- W1810986334 cites W2419092805 @default.
- W1810986334 cites W2596118091 @default.
- W1810986334 cites W2611328865 @default.
- W1810986334 cites W287611495 @default.
- W1810986334 cites W2952072103 @default.
- W1810986334 cites W2953186933 @default.
- W1810986334 cites W3125612732 @default.
- W1810986334 cites W360270745 @default.
- W1810986334 hasPublicationYear "2011" @default.