Matches in SemOpenAlex for { <https://semopenalex.org/work/W1812687514> ?p ?o ?g. }
- W1812687514 abstract "The non-uniform convergence property, i.e. the low-frequency components of the image will converge earlier than the high ones, is an important property to the expectation maximization (EM) iterative process, by which some researchers tried to improve the convergence rates of EM algorithm. In the authors' previous work, they proposed a method based on this property for scatter compensation in SPECT imaging called fast estimation of scatter components (FESC), by which one can estimate the scatter components in projections with good accuracy in high speed. However, there are still many problems remaining unclear about the non-uniform convergence properties of EM iteration. And it is not convenient to analyze the properties of EM algorithm directly by general linear methods because EM iteration belongs to a nonlinear process. Here, the authors completed an investigation by which they can comprehend the non-uniform convergence properties of EM iteration more clearly. A more significant result is that, with the same analysis method in the authors' investigation, they can prove theoretically that the ordered subsets expectation maximization (OS-EM) algorithm possesses a more uniform convergence property than the maximum likelihood expectation maximization (ML-EM) algorithm, contributes to OS-EM algorithm having much convergence rates than ML-EM algorithm. The authors divided the EM iteration into two processes, a back-projection process to acquire the information for updating image and an image-update process to modify the image. The former belongs to a linear process that can be analyzed directly by singular value decomposition (SVD) and the late belongs to a nonlinear process that can be considered to be a modulation process and analyzed by Fourier transform analysis. The results showed that the non-uniform convergence property of EM algorithm is determined by its back-projection process, and the responses of frequency components proportionate to the square of the singular values of system transform matrix which always appears higher values to the low-frequency components than the high-frequency ones." @default.
- W1812687514 created "2016-06-24" @default.
- W1812687514 creator A5020366896 @default.
- W1812687514 creator A5033847686 @default.
- W1812687514 creator A5044331844 @default.
- W1812687514 creator A5064049571 @default.
- W1812687514 date "2003-01-22" @default.
- W1812687514 modified "2023-09-24" @default.
- W1812687514 title "An investigation of convergence rates in expectation maximization (EM) iterative reconstruction" @default.
- W1812687514 cites W1976476321 @default.
- W1812687514 cites W1978425269 @default.
- W1812687514 cites W1990919278 @default.
- W1812687514 cites W1993474563 @default.
- W1812687514 cites W2005836623 @default.
- W1812687514 cites W2006313684 @default.
- W1812687514 cites W2041736014 @default.
- W1812687514 cites W2044656938 @default.
- W1812687514 cites W2049633694 @default.
- W1812687514 cites W2069629287 @default.
- W1812687514 cites W2085588751 @default.
- W1812687514 cites W2096058896 @default.
- W1812687514 cites W2108943734 @default.
- W1812687514 cites W2110844694 @default.
- W1812687514 cites W2133232910 @default.
- W1812687514 cites W2143951291 @default.
- W1812687514 cites W2149790779 @default.
- W1812687514 cites W2154744699 @default.
- W1812687514 cites W2488675944 @default.
- W1812687514 doi "https://doi.org/10.1109/nssmic.1999.842824" @default.
- W1812687514 hasPublicationYear "2003" @default.
- W1812687514 type Work @default.
- W1812687514 sameAs 1812687514 @default.
- W1812687514 citedByCount "2" @default.
- W1812687514 countsByYear W18126875142013 @default.
- W1812687514 crossrefType "proceedings-article" @default.
- W1812687514 hasAuthorship W1812687514A5020366896 @default.
- W1812687514 hasAuthorship W1812687514A5033847686 @default.
- W1812687514 hasAuthorship W1812687514A5044331844 @default.
- W1812687514 hasAuthorship W1812687514A5064049571 @default.
- W1812687514 hasConcept C105795698 @default.
- W1812687514 hasConcept C111472728 @default.
- W1812687514 hasConcept C111919701 @default.
- W1812687514 hasConcept C11413529 @default.
- W1812687514 hasConcept C115961682 @default.
- W1812687514 hasConcept C126255220 @default.
- W1812687514 hasConcept C127162648 @default.
- W1812687514 hasConcept C138885662 @default.
- W1812687514 hasConcept C141379421 @default.
- W1812687514 hasConcept C154945302 @default.
- W1812687514 hasConcept C159694833 @default.
- W1812687514 hasConcept C162324750 @default.
- W1812687514 hasConcept C182081679 @default.
- W1812687514 hasConcept C189950617 @default.
- W1812687514 hasConcept C22789450 @default.
- W1812687514 hasConcept C2776330181 @default.
- W1812687514 hasConcept C2777303404 @default.
- W1812687514 hasConcept C31258907 @default.
- W1812687514 hasConcept C33923547 @default.
- W1812687514 hasConcept C41008148 @default.
- W1812687514 hasConcept C49781872 @default.
- W1812687514 hasConcept C50522688 @default.
- W1812687514 hasConcept C57493831 @default.
- W1812687514 hasConcept C57869625 @default.
- W1812687514 hasConcept C98045186 @default.
- W1812687514 hasConceptScore W1812687514C105795698 @default.
- W1812687514 hasConceptScore W1812687514C111472728 @default.
- W1812687514 hasConceptScore W1812687514C111919701 @default.
- W1812687514 hasConceptScore W1812687514C11413529 @default.
- W1812687514 hasConceptScore W1812687514C115961682 @default.
- W1812687514 hasConceptScore W1812687514C126255220 @default.
- W1812687514 hasConceptScore W1812687514C127162648 @default.
- W1812687514 hasConceptScore W1812687514C138885662 @default.
- W1812687514 hasConceptScore W1812687514C141379421 @default.
- W1812687514 hasConceptScore W1812687514C154945302 @default.
- W1812687514 hasConceptScore W1812687514C159694833 @default.
- W1812687514 hasConceptScore W1812687514C162324750 @default.
- W1812687514 hasConceptScore W1812687514C182081679 @default.
- W1812687514 hasConceptScore W1812687514C189950617 @default.
- W1812687514 hasConceptScore W1812687514C22789450 @default.
- W1812687514 hasConceptScore W1812687514C2776330181 @default.
- W1812687514 hasConceptScore W1812687514C2777303404 @default.
- W1812687514 hasConceptScore W1812687514C31258907 @default.
- W1812687514 hasConceptScore W1812687514C33923547 @default.
- W1812687514 hasConceptScore W1812687514C41008148 @default.
- W1812687514 hasConceptScore W1812687514C49781872 @default.
- W1812687514 hasConceptScore W1812687514C50522688 @default.
- W1812687514 hasConceptScore W1812687514C57493831 @default.
- W1812687514 hasConceptScore W1812687514C57869625 @default.
- W1812687514 hasConceptScore W1812687514C98045186 @default.
- W1812687514 hasLocation W18126875141 @default.
- W1812687514 hasOpenAccess W1812687514 @default.
- W1812687514 hasPrimaryLocation W18126875141 @default.
- W1812687514 hasRelatedWork W1971754175 @default.
- W1812687514 hasRelatedWork W1978351899 @default.
- W1812687514 hasRelatedWork W1988405090 @default.
- W1812687514 hasRelatedWork W2018093048 @default.
- W1812687514 hasRelatedWork W2020299634 @default.
- W1812687514 hasRelatedWork W2028022249 @default.
- W1812687514 hasRelatedWork W2043956433 @default.
- W1812687514 hasRelatedWork W2058351884 @default.