Matches in SemOpenAlex for { <https://semopenalex.org/work/W1817105524> ?p ?o ?g. }
- W1817105524 endingPage "718" @default.
- W1817105524 startingPage "708" @default.
- W1817105524 abstract "We consider a variety of regression modeling strategies for analyzing observational data associated with typical wildlife studies, including all subsets and stepwise regression, a single full model, and Akaike's Information Criterion (AIC)-based multimodel inference. Although there are advantages and disadvantages to each approach, we suggest that there is no unique best way to analyze data. Further, we argue that, although multimodel inference can be useful in natural resource management, the importance of considering causality and accurately estimating effect sizes is greater than simply considering a variety of models. Determining causation is far more valuable than simply indicating how the response variable and explanatory variables covaried within a data set, especially when the data set did not arise from a controlled experiment. Understanding the causal mechanism will provide much better predictions beyond the range of data observed. Published 2015. This article is a U.S. Government work and is in the public domain in the USA." @default.
- W1817105524 created "2016-06-24" @default.
- W1817105524 creator A5012150828 @default.
- W1817105524 creator A5030821429 @default.
- W1817105524 date "2015-05-25" @default.
- W1817105524 modified "2023-10-14" @default.
- W1817105524 title "MMI: Multimodel inference or models with management implications?" @default.
- W1817105524 cites W13565610 @default.
- W1817105524 cites W1491919965 @default.
- W1817105524 cites W1599304806 @default.
- W1817105524 cites W1882730916 @default.
- W1817105524 cites W1902066699 @default.
- W1817105524 cites W1975507878 @default.
- W1817105524 cites W1980370194 @default.
- W1817105524 cites W1981295458 @default.
- W1817105524 cites W1994672023 @default.
- W1817105524 cites W1998025025 @default.
- W1817105524 cites W2016094517 @default.
- W1817105524 cites W2035035907 @default.
- W1817105524 cites W2037592609 @default.
- W1817105524 cites W2041018918 @default.
- W1817105524 cites W2042621940 @default.
- W1817105524 cites W2048776980 @default.
- W1817105524 cites W2050555276 @default.
- W1817105524 cites W2052493319 @default.
- W1817105524 cites W2060050130 @default.
- W1817105524 cites W2066772641 @default.
- W1817105524 cites W2070291495 @default.
- W1817105524 cites W2078502317 @default.
- W1817105524 cites W2089593279 @default.
- W1817105524 cites W2090396547 @default.
- W1817105524 cites W2094595478 @default.
- W1817105524 cites W2100471135 @default.
- W1817105524 cites W2101249857 @default.
- W1817105524 cites W2113002312 @default.
- W1817105524 cites W2118801688 @default.
- W1817105524 cites W2123485214 @default.
- W1817105524 cites W2127072394 @default.
- W1817105524 cites W2128966321 @default.
- W1817105524 cites W2149089907 @default.
- W1817105524 cites W2151705433 @default.
- W1817105524 cites W2153731457 @default.
- W1817105524 cites W2157020902 @default.
- W1817105524 cites W2158196600 @default.
- W1817105524 cites W2163614163 @default.
- W1817105524 cites W2166615416 @default.
- W1817105524 cites W2167122694 @default.
- W1817105524 cites W2483478066 @default.
- W1817105524 cites W254743607 @default.
- W1817105524 cites W2997076692 @default.
- W1817105524 cites W3175417087 @default.
- W1817105524 cites W4253820701 @default.
- W1817105524 cites W4361852026 @default.
- W1817105524 doi "https://doi.org/10.1002/jwmg.894" @default.
- W1817105524 hasPublicationYear "2015" @default.
- W1817105524 type Work @default.
- W1817105524 sameAs 1817105524 @default.
- W1817105524 citedByCount "57" @default.
- W1817105524 countsByYear W18171055242015 @default.
- W1817105524 countsByYear W18171055242016 @default.
- W1817105524 countsByYear W18171055242017 @default.
- W1817105524 countsByYear W18171055242018 @default.
- W1817105524 countsByYear W18171055242019 @default.
- W1817105524 countsByYear W18171055242020 @default.
- W1817105524 countsByYear W18171055242021 @default.
- W1817105524 countsByYear W18171055242022 @default.
- W1817105524 countsByYear W18171055242023 @default.
- W1817105524 crossrefType "journal-article" @default.
- W1817105524 hasAuthorship W1817105524A5012150828 @default.
- W1817105524 hasAuthorship W1817105524A5030821429 @default.
- W1817105524 hasBestOaLocation W18171055241 @default.
- W1817105524 hasConcept C105795698 @default.
- W1817105524 hasConcept C119857082 @default.
- W1817105524 hasConcept C121332964 @default.
- W1817105524 hasConcept C124101348 @default.
- W1817105524 hasConcept C126674687 @default.
- W1817105524 hasConcept C134306372 @default.
- W1817105524 hasConcept C136197465 @default.
- W1817105524 hasConcept C149782125 @default.
- W1817105524 hasConcept C154945302 @default.
- W1817105524 hasConcept C158600405 @default.
- W1817105524 hasConcept C159985019 @default.
- W1817105524 hasConcept C166151441 @default.
- W1817105524 hasConcept C177264268 @default.
- W1817105524 hasConcept C17744445 @default.
- W1817105524 hasConcept C182365436 @default.
- W1817105524 hasConcept C192562407 @default.
- W1817105524 hasConcept C199360897 @default.
- W1817105524 hasConcept C199539241 @default.
- W1817105524 hasConcept C204323151 @default.
- W1817105524 hasConcept C2776214188 @default.
- W1817105524 hasConcept C33923547 @default.
- W1817105524 hasConcept C41008148 @default.
- W1817105524 hasConcept C58489278 @default.
- W1817105524 hasConcept C62520636 @default.
- W1817105524 hasConcept C64357122 @default.
- W1817105524 hasConcept C83546350 @default.
- W1817105524 hasConceptScore W1817105524C105795698 @default.