Matches in SemOpenAlex for { <https://semopenalex.org/work/W1817177252> ?p ?o ?g. }
- W1817177252 abstract "This dissertation is divided into two (distinct but connected) parts that reflect the joint PhD. We study and we solve several questions regarding on the one hand combinatorics on words in an abelian context and on the other hand covering problems in graphs. Each particular problem is the topic of a chapter. In combinatorics on words, the first problem considered focuses on the 2-regularity of sequences in the sense of Allouche and Shallit. We prove that a sequence satisfying a certain symmetry property is 2-regular. Then we apply this theorem to show that the 2-abelian complexity functions of the Thue--Morse word and the period-doubling word are 2-regular. The computation and arguments leading to these results fit into a quite general scheme that we hope can be used again to prove additional regularity results. The second question concerns the notion of return words up to abelian equivalence, introduced by Puzynina and Zamboni. We obtain a characterization of Sturmian words with non-zero intercept in terms of the finiteness of the set of abelian return words to all prefixes. We describe this set of abelian returns for the Fibonacci word but also for the Thue-Morse word (which is not Sturmian). We investigate the relationship existing between the abelian complexity and the finiteness of this set. In graph theory, the first problem considered deals with identifying codes in graphs. These codes were introduced by Karpovsky, Chakrabarty and Levitin to model fault-diagnosis in multiprocessor systems. The ratio between the optimal size of an identifying code and the optimal size of a fractional relaxation of an identifying code is between 1 and 2 ln(|V|)+1 where V is the vertex set of the graph. We focus on vertex-transitive graphs, since we can compute the exact fractional solution for them. We exhibit infinite families, called generalized quadrangles, of vertex-transitive graphs with integer and fractional identifying codes of order |V|^k with k in {1/4,1/3,2/5}. The second problem concerns (r,a,b)-covering codes of the infinite grid already studied by Axenovich and Puzynina. We introduce the notion of constant 2-labellings of weighted graphs and study them in four particular weighted cycles. We present a method to link these labellings with covering codes. Finally, we determine the precise values of the constants a and b of any (r,a,b)-covering code of the infinite grid with |a-b|>4. This is an extension of a theorem of Axenovich." @default.
- W1817177252 created "2016-06-24" @default.
- W1817177252 creator A5007535562 @default.
- W1817177252 date "2015-01-07" @default.
- W1817177252 modified "2023-09-26" @default.
- W1817177252 title "Contributions to combinatorics on words in an abelian context and covering problems in graphs" @default.
- W1817177252 cites W10907566 @default.
- W1817177252 cites W118064341 @default.
- W1817177252 cites W1505427821 @default.
- W1817177252 cites W1512441653 @default.
- W1817177252 cites W1513939901 @default.
- W1817177252 cites W1514324498 @default.
- W1817177252 cites W1532303937 @default.
- W1817177252 cites W1574079735 @default.
- W1817177252 cites W1601749161 @default.
- W1817177252 cites W1607950242 @default.
- W1817177252 cites W1713868372 @default.
- W1817177252 cites W1940757909 @default.
- W1817177252 cites W1967536892 @default.
- W1817177252 cites W1973714686 @default.
- W1817177252 cites W1975206223 @default.
- W1817177252 cites W1976667255 @default.
- W1817177252 cites W1987183845 @default.
- W1817177252 cites W1988415821 @default.
- W1817177252 cites W1992715478 @default.
- W1817177252 cites W2002611253 @default.
- W1817177252 cites W2004251646 @default.
- W1817177252 cites W2006431506 @default.
- W1817177252 cites W2007993937 @default.
- W1817177252 cites W2010608390 @default.
- W1817177252 cites W2010637097 @default.
- W1817177252 cites W2012233760 @default.
- W1817177252 cites W2014565352 @default.
- W1817177252 cites W2016338222 @default.
- W1817177252 cites W2019382777 @default.
- W1817177252 cites W2020031747 @default.
- W1817177252 cites W2034175063 @default.
- W1817177252 cites W2036769664 @default.
- W1817177252 cites W2037020470 @default.
- W1817177252 cites W2037221311 @default.
- W1817177252 cites W2041065628 @default.
- W1817177252 cites W2058416845 @default.
- W1817177252 cites W2070938277 @default.
- W1817177252 cites W2072968076 @default.
- W1817177252 cites W2078676496 @default.
- W1817177252 cites W2083770519 @default.
- W1817177252 cites W2084325182 @default.
- W1817177252 cites W2086722443 @default.
- W1817177252 cites W2086807610 @default.
- W1817177252 cites W2098460688 @default.
- W1817177252 cites W2100994793 @default.
- W1817177252 cites W2101451020 @default.
- W1817177252 cites W2106353099 @default.
- W1817177252 cites W2109534086 @default.
- W1817177252 cites W2122198415 @default.
- W1817177252 cites W2125005237 @default.
- W1817177252 cites W2135173708 @default.
- W1817177252 cites W2136069334 @default.
- W1817177252 cites W2146909040 @default.
- W1817177252 cites W2149149668 @default.
- W1817177252 cites W2150495820 @default.
- W1817177252 cites W2150516939 @default.
- W1817177252 cites W2161047853 @default.
- W1817177252 cites W2163322487 @default.
- W1817177252 cites W2167954650 @default.
- W1817177252 cites W2172008587 @default.
- W1817177252 cites W240203132 @default.
- W1817177252 cites W2523590221 @default.
- W1817177252 cites W2570053645 @default.
- W1817177252 cites W2570386222 @default.
- W1817177252 cites W2793681037 @default.
- W1817177252 cites W2953353171 @default.
- W1817177252 cites W2962792653 @default.
- W1817177252 cites W2963245222 @default.
- W1817177252 cites W2994226168 @default.
- W1817177252 cites W2999637385 @default.
- W1817177252 cites W3105514554 @default.
- W1817177252 cites W3175367423 @default.
- W1817177252 cites W36149982 @default.
- W1817177252 cites W584208200 @default.
- W1817177252 cites W62113036 @default.
- W1817177252 cites W6625301 @default.
- W1817177252 cites W2741963910 @default.
- W1817177252 hasPublicationYear "2015" @default.
- W1817177252 type Work @default.
- W1817177252 sameAs 1817177252 @default.
- W1817177252 citedByCount "1" @default.
- W1817177252 countsByYear W18171772522017 @default.
- W1817177252 crossrefType "dissertation" @default.
- W1817177252 hasAuthorship W1817177252A5007535562 @default.
- W1817177252 hasConcept C114614502 @default.
- W1817177252 hasConcept C118615104 @default.
- W1817177252 hasConcept C136170076 @default.
- W1817177252 hasConcept C151730666 @default.
- W1817177252 hasConcept C164804908 @default.
- W1817177252 hasConcept C2524010 @default.
- W1817177252 hasConcept C2779343474 @default.
- W1817177252 hasConcept C33923547 @default.
- W1817177252 hasConcept C86803240 @default.
- W1817177252 hasConcept C90805587 @default.