Matches in SemOpenAlex for { <https://semopenalex.org/work/W1818243338> ?p ?o ?g. }
- W1818243338 endingPage "298" @default.
- W1818243338 startingPage "282" @default.
- W1818243338 abstract "We construct several new statistical zero-knowledge proofs with efficient provers, i.e. ones where the prover strategy runs in probabilistic polynomial time given an NP witness for the input string. Our first proof systems are for approximate versions of the Shorttest Vector Problem (SVP) and Closest Vector Problem (CVP), where the witness is simply a short vector in the lattice or a lattice vector close to the target, respectively. Our proof systems are in fact proofs of knowledge, and as a result, we immediately obtain efficient lattice-based identification schemes which can be implemented with arbitrary families of lattices in which the approximate SVP or CVP are hard. We then turn to the general question of whether all problems in SZK∩NP admit statistical zero-knowledge proofs with efficient provers. Towards this end, we give a statistical zero-knowledge proof system with an efficient prover for a natural restriction of Statistical Difference, a complete problem for SZK. We also suggest a plausible approach to resolving the general question in the positive." @default.
- W1818243338 created "2016-06-24" @default.
- W1818243338 creator A5016656677 @default.
- W1818243338 creator A5023640008 @default.
- W1818243338 date "2003-01-01" @default.
- W1818243338 modified "2023-09-27" @default.
- W1818243338 title "Statistical Zero-Knowledge Proofs with Efficient Provers: Lattice Problems and More" @default.
- W1818243338 cites W1499237070 @default.
- W1818243338 cites W1524224389 @default.
- W1818243338 cites W1548880861 @default.
- W1818243338 cites W1582043969 @default.
- W1818243338 cites W1675339804 @default.
- W1818243338 cites W1886646278 @default.
- W1818243338 cites W1907609371 @default.
- W1818243338 cites W1967415230 @default.
- W1818243338 cites W1970588133 @default.
- W1818243338 cites W1970606468 @default.
- W1818243338 cites W1976527161 @default.
- W1818243338 cites W1979215153 @default.
- W1818243338 cites W2009759346 @default.
- W1818243338 cites W2011112377 @default.
- W1818243338 cites W2012589104 @default.
- W1818243338 cites W2013794527 @default.
- W1818243338 cites W2015654960 @default.
- W1818243338 cites W2021586362 @default.
- W1818243338 cites W2021741544 @default.
- W1818243338 cites W2024411274 @default.
- W1818243338 cites W2027528470 @default.
- W1818243338 cites W2031714952 @default.
- W1818243338 cites W2069170136 @default.
- W1818243338 cites W2077244027 @default.
- W1818243338 cites W2083237534 @default.
- W1818243338 cites W2101362102 @default.
- W1818243338 cites W2112639677 @default.
- W1818243338 cites W2122412778 @default.
- W1818243338 cites W2137883105 @default.
- W1818243338 cites W2139044314 @default.
- W1818243338 cites W2142048307 @default.
- W1818243338 cites W2142968417 @default.
- W1818243338 cites W2144593761 @default.
- W1818243338 cites W2144820675 @default.
- W1818243338 cites W2169690324 @default.
- W1818243338 cites W2170154494 @default.
- W1818243338 cites W3144422206 @default.
- W1818243338 doi "https://doi.org/10.1007/978-3-540-45146-4_17" @default.
- W1818243338 hasPublicationYear "2003" @default.
- W1818243338 type Work @default.
- W1818243338 sameAs 1818243338 @default.
- W1818243338 citedByCount "127" @default.
- W1818243338 countsByYear W18182433382012 @default.
- W1818243338 countsByYear W18182433382013 @default.
- W1818243338 countsByYear W18182433382014 @default.
- W1818243338 countsByYear W18182433382015 @default.
- W1818243338 countsByYear W18182433382016 @default.
- W1818243338 countsByYear W18182433382017 @default.
- W1818243338 countsByYear W18182433382018 @default.
- W1818243338 countsByYear W18182433382019 @default.
- W1818243338 countsByYear W18182433382020 @default.
- W1818243338 countsByYear W18182433382021 @default.
- W1818243338 countsByYear W18182433382022 @default.
- W1818243338 crossrefType "book-chapter" @default.
- W1818243338 hasAuthorship W1818243338A5016656677 @default.
- W1818243338 hasAuthorship W1818243338A5023640008 @default.
- W1818243338 hasBestOaLocation W18182433381 @default.
- W1818243338 hasConcept C108710211 @default.
- W1818243338 hasConcept C11413529 @default.
- W1818243338 hasConcept C118615104 @default.
- W1818243338 hasConcept C121332964 @default.
- W1818243338 hasConcept C154945302 @default.
- W1818243338 hasConcept C159718280 @default.
- W1818243338 hasConcept C176329583 @default.
- W1818243338 hasConcept C24890656 @default.
- W1818243338 hasConcept C2524010 @default.
- W1818243338 hasConcept C2781204021 @default.
- W1818243338 hasConcept C33923547 @default.
- W1818243338 hasConcept C41008148 @default.
- W1818243338 hasConcept C49937458 @default.
- W1818243338 hasConcept C80444323 @default.
- W1818243338 hasConceptScore W1818243338C108710211 @default.
- W1818243338 hasConceptScore W1818243338C11413529 @default.
- W1818243338 hasConceptScore W1818243338C118615104 @default.
- W1818243338 hasConceptScore W1818243338C121332964 @default.
- W1818243338 hasConceptScore W1818243338C154945302 @default.
- W1818243338 hasConceptScore W1818243338C159718280 @default.
- W1818243338 hasConceptScore W1818243338C176329583 @default.
- W1818243338 hasConceptScore W1818243338C24890656 @default.
- W1818243338 hasConceptScore W1818243338C2524010 @default.
- W1818243338 hasConceptScore W1818243338C2781204021 @default.
- W1818243338 hasConceptScore W1818243338C33923547 @default.
- W1818243338 hasConceptScore W1818243338C41008148 @default.
- W1818243338 hasConceptScore W1818243338C49937458 @default.
- W1818243338 hasConceptScore W1818243338C80444323 @default.
- W1818243338 hasLocation W18182433381 @default.
- W1818243338 hasLocation W18182433382 @default.
- W1818243338 hasOpenAccess W1818243338 @default.
- W1818243338 hasPrimaryLocation W18182433381 @default.
- W1818243338 hasRelatedWork W2785078146 @default.
- W1818243338 hasRelatedWork W2794624029 @default.