Matches in SemOpenAlex for { <https://semopenalex.org/work/W1820140616> ?p ?o ?g. }
Showing items 1 to 67 of
67
with 100 items per page.
- W1820140616 endingPage "393" @default.
- W1820140616 startingPage "380" @default.
- W1820140616 abstract "Applying the standard weighted mean formula, [ ∑iniσi-2]/[∑ iσi-2], to determine the weighted mean of data, ni, drawn from a Poisson distribution, will, on average, underestimate the true mean by ~1 for all true mean values larger than ~3 when the common assumption is made that the error of the ith observation is σi = max (√ni, 1). This small, but statistically significant offset, explains the long-known observation that chi-square minimization techniques which use the modified Neyman's χ2 statistic, χN2 ≡ ∑i (ni-yi)2/max (ni, 1), to compare Poisson-distributed data with model values, yi, will typically predict a total number of counts that underestimates the true total by about 1 count per bin. Based on my finding that the weighted mean of data drawn from a Poisson distribution can be determined using the formula [ ∑i [ ni + min (ni, 1)](ni + 1)-1]/[ ∑i (ni + 1)-1], I propose that a new χ2 statistic, χ2γ ≡ ∑i [ ni + min (ni, 1) - yi]-2]/[ni + 1], should always be used to analyze Poisson-distributed data in preference to the modified Neyman's χ2 statistic. I demonstrate the power and usefulness of χγ2 minimization by using two statistical fitting techniques and five χ2 statistics to analyze simulated X-ray power-law 15 channel spectra with large and small counts per bin. I show that χγ2 minimization with the Levenberg-Marquardt or Powell's method can produce excellent results (mean slope errors ≲3%) with spectra having as few as 25 total counts." @default.
- W1820140616 created "2016-06-24" @default.
- W1820140616 creator A5019528111 @default.
- W1820140616 date "1999-06-10" @default.
- W1820140616 modified "2023-10-16" @default.
- W1820140616 title "Parameter Estimation in Astronomy with Poisson‐distributed Data. I.The documentclass{aastex} usepackage{amsbsy} usepackage{amsfonts} usepackage{amssymb} usepackage{bm} usepackage{mathrsfs} usepackage{pifont} usepackage{stmaryrd} usepackage{textcomp} usepackage{portland,xspace} usepackage{amsmath,amsxtra} usepackage[OT2,OT1]{fontenc} newcommandcyr{ renewcommandrmdefault{wncyr} renewcommandsfdefault{wncyss} renewcommandencodingdefault{OT2} normalfont selectfont} …" @default.
- W1820140616 cites W1539482700 @default.
- W1820140616 cites W1985407422 @default.
- W1820140616 cites W1987319691 @default.
- W1820140616 cites W2054131667 @default.
- W1820140616 cites W2059993298 @default.
- W1820140616 cites W2114013702 @default.
- W1820140616 cites W2128106770 @default.
- W1820140616 cites W2256578114 @default.
- W1820140616 doi "https://doi.org/10.1086/307253" @default.
- W1820140616 hasPublicationYear "1999" @default.
- W1820140616 type Work @default.
- W1820140616 sameAs 1820140616 @default.
- W1820140616 citedByCount "88" @default.
- W1820140616 countsByYear W18201406162012 @default.
- W1820140616 countsByYear W18201406162013 @default.
- W1820140616 countsByYear W18201406162014 @default.
- W1820140616 countsByYear W18201406162015 @default.
- W1820140616 countsByYear W18201406162016 @default.
- W1820140616 countsByYear W18201406162017 @default.
- W1820140616 countsByYear W18201406162018 @default.
- W1820140616 countsByYear W18201406162019 @default.
- W1820140616 countsByYear W18201406162020 @default.
- W1820140616 countsByYear W18201406162021 @default.
- W1820140616 countsByYear W18201406162022 @default.
- W1820140616 countsByYear W18201406162023 @default.
- W1820140616 crossrefType "journal-article" @default.
- W1820140616 hasAuthorship W1820140616A5019528111 @default.
- W1820140616 hasBestOaLocation W18201406161 @default.
- W1820140616 hasConcept C100906024 @default.
- W1820140616 hasConcept C105795698 @default.
- W1820140616 hasConcept C114614502 @default.
- W1820140616 hasConcept C121332964 @default.
- W1820140616 hasConcept C33923547 @default.
- W1820140616 hasConcept C89128539 @default.
- W1820140616 hasConceptScore W1820140616C100906024 @default.
- W1820140616 hasConceptScore W1820140616C105795698 @default.
- W1820140616 hasConceptScore W1820140616C114614502 @default.
- W1820140616 hasConceptScore W1820140616C121332964 @default.
- W1820140616 hasConceptScore W1820140616C33923547 @default.
- W1820140616 hasConceptScore W1820140616C89128539 @default.
- W1820140616 hasIssue "1" @default.
- W1820140616 hasLocation W18201406161 @default.
- W1820140616 hasOpenAccess W1820140616 @default.
- W1820140616 hasPrimaryLocation W18201406161 @default.
- W1820140616 hasRelatedWork W1498795117 @default.
- W1820140616 hasRelatedWork W1500184395 @default.
- W1820140616 hasRelatedWork W1978042415 @default.
- W1820140616 hasRelatedWork W2082181562 @default.
- W1820140616 hasRelatedWork W2098278475 @default.
- W1820140616 hasRelatedWork W2119158312 @default.
- W1820140616 hasRelatedWork W2127881447 @default.
- W1820140616 hasRelatedWork W2153558434 @default.
- W1820140616 hasRelatedWork W2552050053 @default.
- W1820140616 hasRelatedWork W2915710275 @default.
- W1820140616 hasVolume "518" @default.
- W1820140616 isParatext "false" @default.
- W1820140616 isRetracted "false" @default.
- W1820140616 magId "1820140616" @default.
- W1820140616 workType "article" @default.