Matches in SemOpenAlex for { <https://semopenalex.org/work/W1820150924> ?p ?o ?g. }
- W1820150924 endingPage "e0141223" @default.
- W1820150924 startingPage "e0141223" @default.
- W1820150924 abstract "Spatial-temporal correlations among the data play an important role in traffic flow prediction. Correspondingly, traffic modeling and prediction based on big data analytics emerges due to the city-scale interactions among traffic flows. A new methodology based on sparse representation is proposed to reveal the spatial-temporal dependencies among traffic flows so as to simplify the correlations among traffic data for the prediction task at a given sensor. Three important findings are observed in the experiments: (1) Only traffic flows immediately prior to the present time affect the formation of current traffic flows, which implies the possibility to reduce the traditional high-order predictors into an 1-order model. (2) The spatial context relevant to a given prediction task is more complex than what is assumed to exist locally and can spread out to the whole city. (3) The spatial context varies with the target sensor undergoing prediction and enlarges with the increment of time lag for prediction. Because the scope of human mobility is subject to travel time, identifying the varying spatial context against time lag is crucial for prediction. Since sparse representation can capture the varying spatial context to adapt to the prediction task, it outperforms the traditional methods the inputs of which are confined as the data from a fixed number of nearby sensors. As the spatial-temporal context for any prediction task is fully detected from the traffic data in an automated manner, where no additional information regarding network topology is needed, it has good scalability to be applicable to large-scale networks." @default.
- W1820150924 created "2016-06-24" @default.
- W1820150924 creator A5008097382 @default.
- W1820150924 creator A5014274808 @default.
- W1820150924 creator A5036638626 @default.
- W1820150924 creator A5062922419 @default.
- W1820150924 date "2015-10-23" @default.
- W1820150924 modified "2023-09-26" @default.
- W1820150924 title "Spatiotemporal Context Awareness for Urban Traffic Modeling and Prediction: Sparse Representation Based Variable Selection" @default.
- W1820150924 cites W1970238092 @default.
- W1820150924 cites W1972269447 @default.
- W1820150924 cites W1973943669 @default.
- W1820150924 cites W1986931325 @default.
- W1820150924 cites W1991770012 @default.
- W1820150924 cites W1996320907 @default.
- W1820150924 cites W1996851706 @default.
- W1820150924 cites W2009797633 @default.
- W1820150924 cites W2011529478 @default.
- W1820150924 cites W2013598124 @default.
- W1820150924 cites W2024220066 @default.
- W1820150924 cites W2027392238 @default.
- W1820150924 cites W2062017159 @default.
- W1820150924 cites W2063978378 @default.
- W1820150924 cites W2077194907 @default.
- W1820150924 cites W2082533141 @default.
- W1820150924 cites W2082729958 @default.
- W1820150924 cites W2083238230 @default.
- W1820150924 cites W2085592822 @default.
- W1820150924 cites W2100638363 @default.
- W1820150924 cites W2101823987 @default.
- W1820150924 cites W2107124295 @default.
- W1820150924 cites W2131767615 @default.
- W1820150924 cites W2131819535 @default.
- W1820150924 cites W2141948130 @default.
- W1820150924 cites W2150010190 @default.
- W1820150924 cites W2165991108 @default.
- W1820150924 doi "https://doi.org/10.1371/journal.pone.0141223" @default.
- W1820150924 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4619804" @default.
- W1820150924 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/26496370" @default.
- W1820150924 hasPublicationYear "2015" @default.
- W1820150924 type Work @default.
- W1820150924 sameAs 1820150924 @default.
- W1820150924 citedByCount "30" @default.
- W1820150924 countsByYear W18201509242016 @default.
- W1820150924 countsByYear W18201509242017 @default.
- W1820150924 countsByYear W18201509242018 @default.
- W1820150924 countsByYear W18201509242019 @default.
- W1820150924 countsByYear W18201509242020 @default.
- W1820150924 countsByYear W18201509242021 @default.
- W1820150924 countsByYear W18201509242022 @default.
- W1820150924 crossrefType "journal-article" @default.
- W1820150924 hasAuthorship W1820150924A5008097382 @default.
- W1820150924 hasAuthorship W1820150924A5014274808 @default.
- W1820150924 hasAuthorship W1820150924A5036638626 @default.
- W1820150924 hasAuthorship W1820150924A5062922419 @default.
- W1820150924 hasBestOaLocation W18201509241 @default.
- W1820150924 hasConcept C105795698 @default.
- W1820150924 hasConcept C119857082 @default.
- W1820150924 hasConcept C124101348 @default.
- W1820150924 hasConcept C154945302 @default.
- W1820150924 hasConcept C159620131 @default.
- W1820150924 hasConcept C162324750 @default.
- W1820150924 hasConcept C166957645 @default.
- W1820150924 hasConcept C17744445 @default.
- W1820150924 hasConcept C187736073 @default.
- W1820150924 hasConcept C199539241 @default.
- W1820150924 hasConcept C205649164 @default.
- W1820150924 hasConcept C207512268 @default.
- W1820150924 hasConcept C2776359362 @default.
- W1820150924 hasConcept C2779343474 @default.
- W1820150924 hasConcept C2780451532 @default.
- W1820150924 hasConcept C31258907 @default.
- W1820150924 hasConcept C33923547 @default.
- W1820150924 hasConcept C38652104 @default.
- W1820150924 hasConcept C41008148 @default.
- W1820150924 hasConcept C48044578 @default.
- W1820150924 hasConcept C64754055 @default.
- W1820150924 hasConcept C75684735 @default.
- W1820150924 hasConcept C75778745 @default.
- W1820150924 hasConcept C77088390 @default.
- W1820150924 hasConcept C94625758 @default.
- W1820150924 hasConceptScore W1820150924C105795698 @default.
- W1820150924 hasConceptScore W1820150924C119857082 @default.
- W1820150924 hasConceptScore W1820150924C124101348 @default.
- W1820150924 hasConceptScore W1820150924C154945302 @default.
- W1820150924 hasConceptScore W1820150924C159620131 @default.
- W1820150924 hasConceptScore W1820150924C162324750 @default.
- W1820150924 hasConceptScore W1820150924C166957645 @default.
- W1820150924 hasConceptScore W1820150924C17744445 @default.
- W1820150924 hasConceptScore W1820150924C187736073 @default.
- W1820150924 hasConceptScore W1820150924C199539241 @default.
- W1820150924 hasConceptScore W1820150924C205649164 @default.
- W1820150924 hasConceptScore W1820150924C207512268 @default.
- W1820150924 hasConceptScore W1820150924C2776359362 @default.
- W1820150924 hasConceptScore W1820150924C2779343474 @default.
- W1820150924 hasConceptScore W1820150924C2780451532 @default.
- W1820150924 hasConceptScore W1820150924C31258907 @default.
- W1820150924 hasConceptScore W1820150924C33923547 @default.