Matches in SemOpenAlex for { <https://semopenalex.org/work/W1820178547> ?p ?o ?g. }
- W1820178547 abstract "Adsorption occurs whenever a solid surface is exposed to a gas or liquid, and is characterized by an increase in fluid density near the interface. Adsorbents have drawn attention in the current effort to engineer materials that store hydrogen at high densities within moderate temperature and pressure regimes. Carbon adsorbents are a logical choice as a storage material due to their low costs and large surface areas. Unfortunately, carbon adsorbents suffer from a low binding enthalpy for H2 (about 5 kJ mol-1), well below the 15 to 18 kJ mol-1 that is considered optimal for hydrogen storage systems. Binding interactions can be increased by the following methods: (1) adjusting the graphite interplanar separation with a pillared structure, and (2) introducing dopant species that interact with H2 molecules by strong electrostatic forces. Graphite intercalation compounds are a class of materials that contain both pillared structures and chemical dopants, making them an excellent model system for studying the fundamentals of hydrogen adsorption in nanostructured carbons. Pressure-composition-temperature diagrams of the MC24(H2)x graphite intercalation compounds were measured for M = (K, Rb, Cs). Adsorption enthalpies were measured as a function of H2 concentration. Notably, CsC24 had an average adsorption enthalpy of 14.9 kJ mol-1, nearly three times larger than that of pristine graphite. The adsorption enthalpies were found to be positively correlated with the alkali metal size. Adsorption capacities were negatively correlated with the size of the alkali metal. The rate of adsorption is reduced at large H2 compositions, due to the effects of site-blocking and correlation on the H2 diffusion. The strong binding interaction and pronounced molecular-sieving behavior of KC24 is likely to obstruct the translational diffusion of adsorbed H2 molecules. In this work, the diffusion of H2 adsorbed in KC24 was studied by quasielastic neutron scattering measurements and molecular dynamics simulations. As predicted, the rate of diffusion in KC24 is over an order of magnitude slower than in other carbon adsorbents (e.g. carbon nanotubes, nanohorns and carbon blacks). It is similar in magnitude to the rate of H2 diffusion in zeolites with molecular-sized cavities. This suggests that H2 diffusion in adsorbents is influenced very strongly by the pore geometry. The H2 diffusion process in KC24 contains at least two distinct jump frequencies. Bound states of adsorbed H2 in KC24 were investigated by inelastic neutron scattering measurements and density functional theory calculations. Spectral peaks in the neutron energy loss range of 5 meV to 45 meV were observed for the first time. These peaks were interpreted as single- and multi-excitation transitions of the H2 phonon and rotational modes. The rotational barrier for H2 molecules is many times larger in KC24 than in other carbon adsorbents, apparently due to the confinement of the molecules between closely-spaced graphitic layers. Evidence was found for the existence of at least three H2 sorption sites in KC24, each with a distinctive rotational barrier." @default.
- W1820178547 created "2016-06-24" @default.
- W1820178547 creator A5024437109 @default.
- W1820178547 date "2010-01-01" @default.
- W1820178547 modified "2023-09-24" @default.
- W1820178547 title "Hydrogen Adsorption by Alkali Metal Graphite Intercalation Compounds" @default.
- W1820178547 cites W124145692 @default.
- W1820178547 cites W1528556226 @default.
- W1820178547 cites W1555406611 @default.
- W1820178547 cites W1595480191 @default.
- W1820178547 cites W1630264754 @default.
- W1820178547 cites W163833594 @default.
- W1820178547 cites W1650857643 @default.
- W1820178547 cites W1965907662 @default.
- W1820178547 cites W1966910457 @default.
- W1820178547 cites W1968329809 @default.
- W1820178547 cites W1969067580 @default.
- W1820178547 cites W1974285120 @default.
- W1820178547 cites W1975501285 @default.
- W1820178547 cites W1976035800 @default.
- W1820178547 cites W1976449038 @default.
- W1820178547 cites W1976487742 @default.
- W1820178547 cites W1976986947 @default.
- W1820178547 cites W1981368803 @default.
- W1820178547 cites W1982055098 @default.
- W1820178547 cites W1985434350 @default.
- W1820178547 cites W1985650817 @default.
- W1820178547 cites W1986004600 @default.
- W1820178547 cites W1989293511 @default.
- W1820178547 cites W1990822217 @default.
- W1820178547 cites W1991550142 @default.
- W1820178547 cites W1991837794 @default.
- W1820178547 cites W1993962238 @default.
- W1820178547 cites W1994095697 @default.
- W1820178547 cites W1995686275 @default.
- W1820178547 cites W1996258158 @default.
- W1820178547 cites W1996952165 @default.
- W1820178547 cites W1997262629 @default.
- W1820178547 cites W1998128953 @default.
- W1820178547 cites W2000304254 @default.
- W1820178547 cites W2001293558 @default.
- W1820178547 cites W2001469865 @default.
- W1820178547 cites W2001717334 @default.
- W1820178547 cites W2002765673 @default.
- W1820178547 cites W2003370141 @default.
- W1820178547 cites W2004143228 @default.
- W1820178547 cites W2004455833 @default.
- W1820178547 cites W2005833180 @default.
- W1820178547 cites W2006003872 @default.
- W1820178547 cites W2007204799 @default.
- W1820178547 cites W2008543688 @default.
- W1820178547 cites W2008808628 @default.
- W1820178547 cites W2008986361 @default.
- W1820178547 cites W2010972906 @default.
- W1820178547 cites W2011679387 @default.
- W1820178547 cites W2012445774 @default.
- W1820178547 cites W2013986854 @default.
- W1820178547 cites W2016062922 @default.
- W1820178547 cites W2016854671 @default.
- W1820178547 cites W2017049977 @default.
- W1820178547 cites W2017510110 @default.
- W1820178547 cites W2019978649 @default.
- W1820178547 cites W2022494994 @default.
- W1820178547 cites W2023831224 @default.
- W1820178547 cites W2025849153 @default.
- W1820178547 cites W2026028155 @default.
- W1820178547 cites W2027862851 @default.
- W1820178547 cites W2028326848 @default.
- W1820178547 cites W2028858784 @default.
- W1820178547 cites W2030784827 @default.
- W1820178547 cites W2031268685 @default.
- W1820178547 cites W2032090207 @default.
- W1820178547 cites W2033681405 @default.
- W1820178547 cites W2034984769 @default.
- W1820178547 cites W2036954427 @default.
- W1820178547 cites W2037997042 @default.
- W1820178547 cites W2038197904 @default.
- W1820178547 cites W2040017876 @default.
- W1820178547 cites W2040696868 @default.
- W1820178547 cites W2043192670 @default.
- W1820178547 cites W2044591029 @default.
- W1820178547 cites W2045411127 @default.
- W1820178547 cites W2046331751 @default.
- W1820178547 cites W2047669655 @default.
- W1820178547 cites W2052704524 @default.
- W1820178547 cites W2054211668 @default.
- W1820178547 cites W2056647180 @default.
- W1820178547 cites W2056869973 @default.
- W1820178547 cites W2056976688 @default.
- W1820178547 cites W2057502998 @default.
- W1820178547 cites W2060411961 @default.
- W1820178547 cites W2061399145 @default.
- W1820178547 cites W2064160226 @default.
- W1820178547 cites W2067588219 @default.
- W1820178547 cites W2068655610 @default.
- W1820178547 cites W2070716620 @default.
- W1820178547 cites W2071899984 @default.
- W1820178547 cites W2072003961 @default.
- W1820178547 cites W2072652422 @default.
- W1820178547 cites W2073624643 @default.