Matches in SemOpenAlex for { <https://semopenalex.org/work/W1822157051> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W1822157051 abstract "This thesis presents a novel framework for state estimation in the context of robotic grasping and manipulation. The overall estimation approach is based on fusing various visual cues for manipulator tracking, namely appearance and feature-based, shape-based, and silhouette-based visual cues. Similarly, a framework is developed to fuse the above visual cues, but also kinesthetic cues such as force-torque and tactile measurements, for in-hand object pose estimation. The cues are extracted from multiple sensor modalities and are fused in a variety of Kalman filters. A hybrid estimator is developed to estimate both a continuous state (robot and object states) and discrete states, called contact modes, which specify how each finger contacts a particular object surface. A static multiple model estimator is used to compute and maintain this mode probability. The thesis also develops an estimation framework for estimating model parameters associated with object grasping. Dual and joint state-parameter estimation is explored for parameter estimation of a grasped object's mass and center of mass. Experimental results demonstrate simultaneous object localization and center of mass estimation. Dual-arm estimation is developed for two arm robotic manipulation tasks. Two types of filters are explored; the first is an augmented filter that contains both arms in the state vector while the second runs two filters in parallel, one for each arm. These two frameworks and their performance is compared in a dual-arm task of removing a wheel from a hub. This thesis also presents a new method for action selection involving touch. This next best touch method selects an available action for interacting with an object that will gain the most information. The algorithm employs information theory to compute an information gain metric that is based on a probabilistic belief suitable for the task. An estimation framework is used to maintain this belief over time. Kinesthetic measurements such as contact and tactile measurements are used to update the state belief after every interactive action. Simulation and experimental results are demonstrated using next best touch for object localization, specifically a door handle on a door.The next best touch theory is extended for model parameter determination. Since many objects within a particular object category share the same rough shape, principle component analysis may be used to parametrize the object mesh models. These parameters can be estimated using the action selection technique that selects the touching action which best both localizes and estimates these parameters. Simulation results are then presented involving localizing and determining a parameter of a screwdriver. Lastly, the next best touch theory is further extended to model classes. Instead of estimating parameters, object class determination is incorporated into the information gain metric calculation. The best touching action is selected in order to best discern between the possible model classes. Simulation results are presented to validate the theory." @default.
- W1822157051 created "2016-06-24" @default.
- W1822157051 creator A5083044232 @default.
- W1822157051 date "2013-01-01" @default.
- W1822157051 modified "2023-09-27" @default.
- W1822157051 title "Estimation and Inference for Grasping and Manipulation Tasks Using Vision and Kinesthetic Sensors" @default.
- W1822157051 doi "https://doi.org/10.7907/pzb6-qj39." @default.
- W1822157051 hasPublicationYear "2013" @default.
- W1822157051 type Work @default.
- W1822157051 sameAs 1822157051 @default.
- W1822157051 citedByCount "1" @default.
- W1822157051 countsByYear W18221570512013 @default.
- W1822157051 crossrefType "dissertation" @default.
- W1822157051 hasAuthorship W1822157051A5083044232 @default.
- W1822157051 hasConcept C105795698 @default.
- W1822157051 hasConcept C145420912 @default.
- W1822157051 hasConcept C151730666 @default.
- W1822157051 hasConcept C154945302 @default.
- W1822157051 hasConcept C157286648 @default.
- W1822157051 hasConcept C185429906 @default.
- W1822157051 hasConcept C206833254 @default.
- W1822157051 hasConcept C2779343474 @default.
- W1822157051 hasConcept C2781238097 @default.
- W1822157051 hasConcept C31972630 @default.
- W1822157051 hasConcept C33923547 @default.
- W1822157051 hasConcept C41008148 @default.
- W1822157051 hasConcept C52102323 @default.
- W1822157051 hasConcept C55457006 @default.
- W1822157051 hasConcept C86803240 @default.
- W1822157051 hasConceptScore W1822157051C105795698 @default.
- W1822157051 hasConceptScore W1822157051C145420912 @default.
- W1822157051 hasConceptScore W1822157051C151730666 @default.
- W1822157051 hasConceptScore W1822157051C154945302 @default.
- W1822157051 hasConceptScore W1822157051C157286648 @default.
- W1822157051 hasConceptScore W1822157051C185429906 @default.
- W1822157051 hasConceptScore W1822157051C206833254 @default.
- W1822157051 hasConceptScore W1822157051C2779343474 @default.
- W1822157051 hasConceptScore W1822157051C2781238097 @default.
- W1822157051 hasConceptScore W1822157051C31972630 @default.
- W1822157051 hasConceptScore W1822157051C33923547 @default.
- W1822157051 hasConceptScore W1822157051C41008148 @default.
- W1822157051 hasConceptScore W1822157051C52102323 @default.
- W1822157051 hasConceptScore W1822157051C55457006 @default.
- W1822157051 hasConceptScore W1822157051C86803240 @default.
- W1822157051 hasLocation W18221570511 @default.
- W1822157051 hasOpenAccess W1822157051 @default.
- W1822157051 hasPrimaryLocation W18221570511 @default.
- W1822157051 hasRelatedWork W1975923613 @default.
- W1822157051 hasRelatedWork W2016727870 @default.
- W1822157051 hasRelatedWork W2108423162 @default.
- W1822157051 hasRelatedWork W2110208234 @default.
- W1822157051 hasRelatedWork W2112645080 @default.
- W1822157051 hasRelatedWork W2122920515 @default.
- W1822157051 hasRelatedWork W2130600130 @default.
- W1822157051 hasRelatedWork W2146405081 @default.
- W1822157051 hasRelatedWork W2168868109 @default.
- W1822157051 hasRelatedWork W2306914735 @default.
- W1822157051 hasRelatedWork W2773740919 @default.
- W1822157051 hasRelatedWork W2801487100 @default.
- W1822157051 hasRelatedWork W2908976369 @default.
- W1822157051 hasRelatedWork W2967114698 @default.
- W1822157051 hasRelatedWork W2967578475 @default.
- W1822157051 hasRelatedWork W3004158514 @default.
- W1822157051 hasRelatedWork W3111972051 @default.
- W1822157051 hasRelatedWork W3135032111 @default.
- W1822157051 hasRelatedWork W3205009189 @default.
- W1822157051 hasRelatedWork W333177281 @default.
- W1822157051 isParatext "false" @default.
- W1822157051 isRetracted "false" @default.
- W1822157051 magId "1822157051" @default.
- W1822157051 workType "dissertation" @default.