Matches in SemOpenAlex for { <https://semopenalex.org/work/W1822713087> ?p ?o ?g. }
- W1822713087 endingPage "1153" @default.
- W1822713087 startingPage "1144" @default.
- W1822713087 abstract "Purpose To validate automatic substitute computed tomography CT (sCT) scans generated from standard T2-weighted (T2w) magnetic resonance (MR) pelvic scans for MR-Sim prostate treatment planning. Patients and Methods A Siemens Skyra 3T MR imaging (MRI) scanner with laser bridge, flat couch, and pelvic coil mounts was used to scan 39 patients scheduled for external beam radiation therapy for localized prostate cancer. For sCT generation a whole-pelvis MRI scan (1.6 mm 3-dimensional isotropic T2w SPACE [Sampling Perfection with Application optimized Contrasts using different flip angle Evolution] sequence) was acquired. Three additional small field of view scans were acquired: T2w, T2*w, and T1w flip angle 80° for gold fiducials. Patients received a routine planning CT scan. Manual contouring of the prostate, rectum, bladder, and bones was performed independently on the CT and MR scans. Three experienced observers contoured each organ on MRI, allowing interobserver quantification. To generate a training database, each patient CT scan was coregistered to their whole-pelvis T2w using symmetric rigid registration and structure-guided deformable registration. A new multi-atlas local weighted voting method was used to generate automatic contours and sCT results. Results The mean error in Hounsfield units between the sCT and corresponding patient CT (within the body contour) was 0.6 ± 14.7 (mean ± 1 SD), with a mean absolute error of 40.5 ± 8.2 Hounsfield units. Automatic contouring results were very close to the expert interobserver level (Dice similarity coefficient): prostate 0.80 ± 0.08, bladder 0.86 ± 0.12, rectum 0.84 ± 0.06, bones 0.91 ± 0.03, and body 1.00 ± 0.003. The change in monitor units between the sCT-based plans relative to the gold standard CT plan for the same dose prescription was found to be 0.3% ± 0.8%. The 3-dimensional γ pass rate was 1.00 ± 0.00 (2 mm/2%). Conclusions The MR-Sim setup and automatic sCT generation methods using standard MR sequences generates realistic contours and electron densities for prostate cancer radiation therapy dose planning and digitally reconstructed radiograph generation. To validate automatic substitute computed tomography CT (sCT) scans generated from standard T2-weighted (T2w) magnetic resonance (MR) pelvic scans for MR-Sim prostate treatment planning. A Siemens Skyra 3T MR imaging (MRI) scanner with laser bridge, flat couch, and pelvic coil mounts was used to scan 39 patients scheduled for external beam radiation therapy for localized prostate cancer. For sCT generation a whole-pelvis MRI scan (1.6 mm 3-dimensional isotropic T2w SPACE [Sampling Perfection with Application optimized Contrasts using different flip angle Evolution] sequence) was acquired. Three additional small field of view scans were acquired: T2w, T2*w, and T1w flip angle 80° for gold fiducials. Patients received a routine planning CT scan. Manual contouring of the prostate, rectum, bladder, and bones was performed independently on the CT and MR scans. Three experienced observers contoured each organ on MRI, allowing interobserver quantification. To generate a training database, each patient CT scan was coregistered to their whole-pelvis T2w using symmetric rigid registration and structure-guided deformable registration. A new multi-atlas local weighted voting method was used to generate automatic contours and sCT results. The mean error in Hounsfield units between the sCT and corresponding patient CT (within the body contour) was 0.6 ± 14.7 (mean ± 1 SD), with a mean absolute error of 40.5 ± 8.2 Hounsfield units. Automatic contouring results were very close to the expert interobserver level (Dice similarity coefficient): prostate 0.80 ± 0.08, bladder 0.86 ± 0.12, rectum 0.84 ± 0.06, bones 0.91 ± 0.03, and body 1.00 ± 0.003. The change in monitor units between the sCT-based plans relative to the gold standard CT plan for the same dose prescription was found to be 0.3% ± 0.8%. The 3-dimensional γ pass rate was 1.00 ± 0.00 (2 mm/2%). The MR-Sim setup and automatic sCT generation methods using standard MR sequences generates realistic contours and electron densities for prostate cancer radiation therapy dose planning and digitally reconstructed radiograph generation." @default.
- W1822713087 created "2016-06-24" @default.
- W1822713087 creator A5004560596 @default.
- W1822713087 creator A5023809387 @default.
- W1822713087 creator A5033029609 @default.
- W1822713087 creator A5037863161 @default.
- W1822713087 creator A5040266087 @default.
- W1822713087 creator A5041143057 @default.
- W1822713087 creator A5051407430 @default.
- W1822713087 creator A5055349498 @default.
- W1822713087 creator A5057336608 @default.
- W1822713087 creator A5076539887 @default.
- W1822713087 creator A5077989366 @default.
- W1822713087 creator A5082669323 @default.
- W1822713087 creator A5083545460 @default.
- W1822713087 creator A5084680152 @default.
- W1822713087 date "2015-12-01" @default.
- W1822713087 modified "2023-10-16" @default.
- W1822713087 title "Automatic Substitute Computed Tomography Generation and Contouring for Magnetic Resonance Imaging (MRI)-Alone External Beam Radiation Therapy From Standard MRI Sequences" @default.
- W1822713087 cites W136839944 @default.
- W1822713087 cites W1530396226 @default.
- W1822713087 cites W1558579465 @default.
- W1822713087 cites W1967121735 @default.
- W1822713087 cites W1982095138 @default.
- W1822713087 cites W1984473052 @default.
- W1822713087 cites W1991135330 @default.
- W1822713087 cites W1994672425 @default.
- W1822713087 cites W2000311672 @default.
- W1822713087 cites W2003933915 @default.
- W1822713087 cites W2005943994 @default.
- W1822713087 cites W2006608715 @default.
- W1822713087 cites W2015897296 @default.
- W1822713087 cites W2021177063 @default.
- W1822713087 cites W2042094391 @default.
- W1822713087 cites W2043626403 @default.
- W1822713087 cites W2044967973 @default.
- W1822713087 cites W2045375756 @default.
- W1822713087 cites W2052617496 @default.
- W1822713087 cites W2061374864 @default.
- W1822713087 cites W2070935120 @default.
- W1822713087 cites W2086284908 @default.
- W1822713087 cites W2087726204 @default.
- W1822713087 cites W2094768870 @default.
- W1822713087 cites W2099510473 @default.
- W1822713087 cites W2103857226 @default.
- W1822713087 cites W2110966329 @default.
- W1822713087 cites W2115173250 @default.
- W1822713087 cites W2117340355 @default.
- W1822713087 cites W2124176686 @default.
- W1822713087 cites W2124904604 @default.
- W1822713087 cites W2128806031 @default.
- W1822713087 cites W2137387807 @default.
- W1822713087 cites W2139716070 @default.
- W1822713087 cites W2140866726 @default.
- W1822713087 cites W2142082007 @default.
- W1822713087 cites W2148347694 @default.
- W1822713087 cites W2163529068 @default.
- W1822713087 cites W2317204702 @default.
- W1822713087 cites W4205944738 @default.
- W1822713087 doi "https://doi.org/10.1016/j.ijrobp.2015.08.045" @default.
- W1822713087 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/26581150" @default.
- W1822713087 hasPublicationYear "2015" @default.
- W1822713087 type Work @default.
- W1822713087 sameAs 1822713087 @default.
- W1822713087 citedByCount "142" @default.
- W1822713087 countsByYear W18227130872016 @default.
- W1822713087 countsByYear W18227130872017 @default.
- W1822713087 countsByYear W18227130872018 @default.
- W1822713087 countsByYear W18227130872019 @default.
- W1822713087 countsByYear W18227130872020 @default.
- W1822713087 countsByYear W18227130872021 @default.
- W1822713087 countsByYear W18227130872022 @default.
- W1822713087 countsByYear W18227130872023 @default.
- W1822713087 crossrefType "journal-article" @default.
- W1822713087 hasAuthorship W1822713087A5004560596 @default.
- W1822713087 hasAuthorship W1822713087A5023809387 @default.
- W1822713087 hasAuthorship W1822713087A5033029609 @default.
- W1822713087 hasAuthorship W1822713087A5037863161 @default.
- W1822713087 hasAuthorship W1822713087A5040266087 @default.
- W1822713087 hasAuthorship W1822713087A5041143057 @default.
- W1822713087 hasAuthorship W1822713087A5051407430 @default.
- W1822713087 hasAuthorship W1822713087A5055349498 @default.
- W1822713087 hasAuthorship W1822713087A5057336608 @default.
- W1822713087 hasAuthorship W1822713087A5076539887 @default.
- W1822713087 hasAuthorship W1822713087A5077989366 @default.
- W1822713087 hasAuthorship W1822713087A5082669323 @default.
- W1822713087 hasAuthorship W1822713087A5083545460 @default.
- W1822713087 hasAuthorship W1822713087A5084680152 @default.
- W1822713087 hasConcept C121608353 @default.
- W1822713087 hasConcept C121684516 @default.
- W1822713087 hasConcept C126322002 @default.
- W1822713087 hasConcept C126838900 @default.
- W1822713087 hasConcept C143409427 @default.
- W1822713087 hasConcept C173974348 @default.
- W1822713087 hasConcept C187954543 @default.
- W1822713087 hasConcept C201645570 @default.
- W1822713087 hasConcept C2776235491 @default.
- W1822713087 hasConcept C2778357063 @default.