Matches in SemOpenAlex for { <https://semopenalex.org/work/W1823924931> ?p ?o ?g. }
- W1823924931 abstract "We propose a general matrix-valued multiple kernel learning framework for high-dimensional nonlinear multivariate regression problems. This framework allows a broad class of mixed norm regularizers, including those that induce sparsity, to be imposed on a dictionary of vector-valued Reproducing Kernel Hilbert Spaces. We develop a highly scalable and eigendecomposition-free algorithm that orchestrates two inexact solvers for simultaneously learning both the input and output components of separable matrix-valued kernels. As a key application enabled by our framework, we show how high-dimensional causal inference tasks can be naturally cast as sparse function estimation problems, leading to novel nonlinear extensions of a class of Graphical Granger Causality techniques. Our algorithmic developments and extensive empirical studies are complemented by theoretical analyses in terms of Rademacher generalization bounds." @default.
- W1823924931 created "2016-06-24" @default.
- W1823924931 creator A5007571091 @default.
- W1823924931 creator A5055054658 @default.
- W1823924931 creator A5058073838 @default.
- W1823924931 date "2012-10-17" @default.
- W1823924931 modified "2023-09-27" @default.
- W1823924931 title "Scalable Matrix-valued Kernel Learning for High-dimensional Nonlinear Multivariate Regression and Granger Causality" @default.
- W1823924931 cites W145994340 @default.
- W1823924931 cites W1515020792 @default.
- W1823924931 cites W1518544712 @default.
- W1823924931 cites W1541700983 @default.
- W1823924931 cites W1563853427 @default.
- W1823924931 cites W1565176583 @default.
- W1823924931 cites W1574851760 @default.
- W1823924931 cites W1775587472 @default.
- W1823924931 cites W1828831131 @default.
- W1823924931 cites W1986280275 @default.
- W1823924931 cites W1992774275 @default.
- W1823924931 cites W2009271606 @default.
- W1823924931 cites W2081531193 @default.
- W1823924931 cites W2098460974 @default.
- W1823924931 cites W2099693464 @default.
- W1823924931 cites W2101593431 @default.
- W1823924931 cites W2105581244 @default.
- W1823924931 cites W2109706083 @default.
- W1823924931 cites W2115003579 @default.
- W1823924931 cites W2115021853 @default.
- W1823924931 cites W2116343548 @default.
- W1823924931 cites W2118418963 @default.
- W1823924931 cites W2121033924 @default.
- W1823924931 cites W2128610923 @default.
- W1823924931 cites W2138019504 @default.
- W1823924931 cites W2144902422 @default.
- W1823924931 cites W2146611938 @default.
- W1823924931 cites W2170912114 @default.
- W1823924931 cites W2171188027 @default.
- W1823924931 cites W2538008885 @default.
- W1823924931 cites W2579923771 @default.
- W1823924931 cites W2947626232 @default.
- W1823924931 cites W2952139899 @default.
- W1823924931 cites W2953193873 @default.
- W1823924931 cites W3021971632 @default.
- W1823924931 cites W340056678 @default.
- W1823924931 cites W45695613 @default.
- W1823924931 hasPublicationYear "2012" @default.
- W1823924931 type Work @default.
- W1823924931 sameAs 1823924931 @default.
- W1823924931 citedByCount "5" @default.
- W1823924931 countsByYear W18239249312015 @default.
- W1823924931 countsByYear W18239249312018 @default.
- W1823924931 countsByYear W18239249312020 @default.
- W1823924931 countsByYear W18239249312021 @default.
- W1823924931 crossrefType "posted-content" @default.
- W1823924931 hasAuthorship W1823924931A5007571091 @default.
- W1823924931 hasAuthorship W1823924931A5055054658 @default.
- W1823924931 hasAuthorship W1823924931A5058073838 @default.
- W1823924931 hasConcept C106487976 @default.
- W1823924931 hasConcept C11413529 @default.
- W1823924931 hasConcept C118615104 @default.
- W1823924931 hasConcept C119857082 @default.
- W1823924931 hasConcept C121332964 @default.
- W1823924931 hasConcept C122280245 @default.
- W1823924931 hasConcept C12267149 @default.
- W1823924931 hasConcept C126255220 @default.
- W1823924931 hasConcept C129824826 @default.
- W1823924931 hasConcept C134306372 @default.
- W1823924931 hasConcept C149782125 @default.
- W1823924931 hasConcept C154945302 @default.
- W1823924931 hasConcept C158600405 @default.
- W1823924931 hasConcept C158622935 @default.
- W1823924931 hasConcept C158693339 @default.
- W1823924931 hasConcept C159985019 @default.
- W1823924931 hasConcept C161584116 @default.
- W1823924931 hasConcept C169756996 @default.
- W1823924931 hasConcept C177148314 @default.
- W1823924931 hasConcept C17744445 @default.
- W1823924931 hasConcept C191795146 @default.
- W1823924931 hasConcept C192562407 @default.
- W1823924931 hasConcept C199539241 @default.
- W1823924931 hasConcept C2776214188 @default.
- W1823924931 hasConcept C28826006 @default.
- W1823924931 hasConcept C33923547 @default.
- W1823924931 hasConcept C41008148 @default.
- W1823924931 hasConcept C62520636 @default.
- W1823924931 hasConcept C62799726 @default.
- W1823924931 hasConcept C74193536 @default.
- W1823924931 hasConcept C80884492 @default.
- W1823924931 hasConcept C92207270 @default.
- W1823924931 hasConceptScore W1823924931C106487976 @default.
- W1823924931 hasConceptScore W1823924931C11413529 @default.
- W1823924931 hasConceptScore W1823924931C118615104 @default.
- W1823924931 hasConceptScore W1823924931C119857082 @default.
- W1823924931 hasConceptScore W1823924931C121332964 @default.
- W1823924931 hasConceptScore W1823924931C122280245 @default.
- W1823924931 hasConceptScore W1823924931C12267149 @default.
- W1823924931 hasConceptScore W1823924931C126255220 @default.
- W1823924931 hasConceptScore W1823924931C129824826 @default.
- W1823924931 hasConceptScore W1823924931C134306372 @default.
- W1823924931 hasConceptScore W1823924931C149782125 @default.