Matches in SemOpenAlex for { <https://semopenalex.org/work/W1824194632> ?p ?o ?g. }
- W1824194632 endingPage "25312" @default.
- W1824194632 startingPage "25287" @default.
- W1824194632 abstract "UAVs and other low-altitude remote sensing platforms are proving very useful tools for remote sensing of river systems. Currently consumer grade cameras are still the most commonly used sensors for this purpose. In particular, progress is being made to obtain river bathymetry from the optical image data collected with such cameras, using the strong attenuation of light in water. No studies have yet applied this method to map submergence depth of aquatic vegetation, which has rather different reflectance characteristics from river bed substrate. This study therefore looked at the possibilities to use the optical image data to map submerged aquatic vegetation (SAV) depth in shallow clear water streams. We first applied the Optimal Band Ratio Analysis method (OBRA) of Legleiter et al. (2009) to a dataset of spectral signatures from three macrophyte species in a clear water stream. The results showed that for each species the ratio of certain wavelengths were strongly associated with depth. A combined assessment of all species resulted in equally strong associations, indicating that the effect of spectral variation in vegetation is subsidiary to spectral variation due to depth changes. Strongest associations (R2-values ranging from 0.67 to 0.90 for different species) were found for combinations including one band in the near infrared (NIR) region between 825 and 925 nm and one band in the visible light region. Currently data of both high spatial and spectral resolution is not commonly available to apply the OBRA results directly to image data for SAV depth mapping. Instead a novel, low-cost data acquisition method was used to obtain six-band high spatial resolution image composites using a NIR sensitive DSLR camera. A field dataset of SAV submergence depths was used to develop regression models for the mapping of submergence depth from image pixel values. Band (combinations) providing the best performing models (R2-values up to 0.77) corresponded with the OBRA findings. A 10% error was achieved under sub-optimal data collection conditions, which indicates that the method could be suitable for many SAV mapping applications." @default.
- W1824194632 created "2016-06-24" @default.
- W1824194632 creator A5022362847 @default.
- W1824194632 creator A5064295082 @default.
- W1824194632 creator A5065844287 @default.
- W1824194632 creator A5070167894 @default.
- W1824194632 date "2015-09-30" @default.
- W1824194632 modified "2023-10-07" @default.
- W1824194632 title "Depth Estimation of Submerged Aquatic Vegetation in Clear Water Streams Using Low-Altitude Optical Remote Sensing" @default.
- W1824194632 cites W1515184574 @default.
- W1824194632 cites W1773543203 @default.
- W1824194632 cites W1928585742 @default.
- W1824194632 cites W1963772043 @default.
- W1824194632 cites W1978153689 @default.
- W1824194632 cites W1990468547 @default.
- W1824194632 cites W1995421053 @default.
- W1824194632 cites W1996348105 @default.
- W1824194632 cites W1998627176 @default.
- W1824194632 cites W2000931811 @default.
- W1824194632 cites W2008669966 @default.
- W1824194632 cites W2011738126 @default.
- W1824194632 cites W2016658782 @default.
- W1824194632 cites W2026593617 @default.
- W1824194632 cites W2052107671 @default.
- W1824194632 cites W2060552827 @default.
- W1824194632 cites W2068990297 @default.
- W1824194632 cites W2085070335 @default.
- W1824194632 cites W2095768405 @default.
- W1824194632 cites W2099104358 @default.
- W1824194632 cites W2107301689 @default.
- W1824194632 cites W2120886716 @default.
- W1824194632 cites W2129986698 @default.
- W1824194632 cites W2138060511 @default.
- W1824194632 cites W2138101720 @default.
- W1824194632 cites W2141998175 @default.
- W1824194632 cites W2142454868 @default.
- W1824194632 cites W2146093016 @default.
- W1824194632 cites W2146249434 @default.
- W1824194632 cites W2152686492 @default.
- W1824194632 cites W2171241984 @default.
- W1824194632 doi "https://doi.org/10.3390/s151025287" @default.
- W1824194632 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4634511" @default.
- W1824194632 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/26437410" @default.
- W1824194632 hasPublicationYear "2015" @default.
- W1824194632 type Work @default.
- W1824194632 sameAs 1824194632 @default.
- W1824194632 citedByCount "21" @default.
- W1824194632 countsByYear W18241946322016 @default.
- W1824194632 countsByYear W18241946322017 @default.
- W1824194632 countsByYear W18241946322018 @default.
- W1824194632 countsByYear W18241946322019 @default.
- W1824194632 countsByYear W18241946322020 @default.
- W1824194632 countsByYear W18241946322022 @default.
- W1824194632 countsByYear W18241946322023 @default.
- W1824194632 crossrefType "journal-article" @default.
- W1824194632 hasAuthorship W1824194632A5022362847 @default.
- W1824194632 hasAuthorship W1824194632A5064295082 @default.
- W1824194632 hasAuthorship W1824194632A5065844287 @default.
- W1824194632 hasAuthorship W1824194632A5070167894 @default.
- W1824194632 hasBestOaLocation W18241946321 @default.
- W1824194632 hasConcept C111368507 @default.
- W1824194632 hasConcept C114700698 @default.
- W1824194632 hasConcept C115051666 @default.
- W1824194632 hasConcept C127313418 @default.
- W1824194632 hasConcept C132000320 @default.
- W1824194632 hasConcept C13280743 @default.
- W1824194632 hasConcept C142724271 @default.
- W1824194632 hasConcept C174943157 @default.
- W1824194632 hasConcept C187320778 @default.
- W1824194632 hasConcept C2524010 @default.
- W1824194632 hasConcept C2776133958 @default.
- W1824194632 hasConcept C31258907 @default.
- W1824194632 hasConcept C33923547 @default.
- W1824194632 hasConcept C34771814 @default.
- W1824194632 hasConcept C39432304 @default.
- W1824194632 hasConcept C41008148 @default.
- W1824194632 hasConcept C42090638 @default.
- W1824194632 hasConcept C62649853 @default.
- W1824194632 hasConcept C6350597 @default.
- W1824194632 hasConcept C71924100 @default.
- W1824194632 hasConcept C76886044 @default.
- W1824194632 hasConceptScore W1824194632C111368507 @default.
- W1824194632 hasConceptScore W1824194632C114700698 @default.
- W1824194632 hasConceptScore W1824194632C115051666 @default.
- W1824194632 hasConceptScore W1824194632C127313418 @default.
- W1824194632 hasConceptScore W1824194632C132000320 @default.
- W1824194632 hasConceptScore W1824194632C13280743 @default.
- W1824194632 hasConceptScore W1824194632C142724271 @default.
- W1824194632 hasConceptScore W1824194632C174943157 @default.
- W1824194632 hasConceptScore W1824194632C187320778 @default.
- W1824194632 hasConceptScore W1824194632C2524010 @default.
- W1824194632 hasConceptScore W1824194632C2776133958 @default.
- W1824194632 hasConceptScore W1824194632C31258907 @default.
- W1824194632 hasConceptScore W1824194632C33923547 @default.
- W1824194632 hasConceptScore W1824194632C34771814 @default.
- W1824194632 hasConceptScore W1824194632C39432304 @default.
- W1824194632 hasConceptScore W1824194632C41008148 @default.
- W1824194632 hasConceptScore W1824194632C42090638 @default.