Matches in SemOpenAlex for { <https://semopenalex.org/work/W1824257344> ?p ?o ?g. }
- W1824257344 abstract "The incorporation of priors in the Optimal Uncertainty Quantification (OUQ) framework cite{OSSMO:2011} reveals brittleness in Bayesian inference; a model may share an arbitrarily large number of finite-dimensional marginals with, or be arbitrarily close (in Prokhorov or total variation metrics) to, the data-generating distribution and still make the largest possible prediction error after conditioning on an arbitrarily large number of samples. The initial purpose of this paper is to unwrap this brittleness mechanism by providing (i) a quantitative version of the Brittleness Theorem of cite{BayesOUQ} and (ii) a detailed and comprehensive analysis of its application to the revealing example of estimating the mean of a random variable on the unit interval $[0,1]$ using priors that exactly capture the distribution of an arbitrarily large number of Hausdorff moments. However, in doing so, we discovered that the free parameter associated with Markov and Kreu{i}n's canonical representations of truncated Hausdorff moments generates reproducing kernel identities corresponding to reproducing kernel Hilbert spaces of polynomials. Furthermore, these reproducing identities lead to biorthogonal systems of Selberg integral formulas. This process of discovery appears to be generic: whereas Karlin and Shapley used Selberg's integral formula to first compute the volume of the Hausdorff moment space (the polytope defined by the first $n$ moments of a probability measure on the interval $[0,1]$), we observe that the computation of that volume along with higher order moments of the uniform measure on the moment space, using different finite-dimensional representations of subsets of the infinite-dimensional set of probability measures on $[0,1]$ representing the first $n$ moments, leads to families of equalities corresponding to classical and new Selberg identities." @default.
- W1824257344 created "2016-06-24" @default.
- W1824257344 creator A5015708841 @default.
- W1824257344 creator A5034000581 @default.
- W1824257344 date "2013-04-26" @default.
- W1824257344 modified "2023-09-27" @default.
- W1824257344 title "Brittleness of Bayesian inference and new Selberg formulas" @default.
- W1824257344 cites W1488022545 @default.
- W1824257344 cites W1488435683 @default.
- W1824257344 cites W1531856058 @default.
- W1824257344 cites W1565176583 @default.
- W1824257344 cites W1577258119 @default.
- W1824257344 cites W1593542532 @default.
- W1824257344 cites W1802869730 @default.
- W1824257344 cites W1986280275 @default.
- W1824257344 cites W2001448779 @default.
- W1824257344 cites W2003706076 @default.
- W1824257344 cites W2025208602 @default.
- W1824257344 cites W2026883498 @default.
- W1824257344 cites W2040080160 @default.
- W1824257344 cites W2041327972 @default.
- W1824257344 cites W2054732436 @default.
- W1824257344 cites W2060802161 @default.
- W1824257344 cites W2061293389 @default.
- W1824257344 cites W2063621797 @default.
- W1824257344 cites W2069842320 @default.
- W1824257344 cites W2078009515 @default.
- W1824257344 cites W2083927432 @default.
- W1824257344 cites W2087848552 @default.
- W1824257344 cites W2101121254 @default.
- W1824257344 cites W2120062331 @default.
- W1824257344 cites W2139734935 @default.
- W1824257344 cites W2146766088 @default.
- W1824257344 cites W23656998 @default.
- W1824257344 cites W2531526418 @default.
- W1824257344 cites W2752885492 @default.
- W1824257344 cites W2785599221 @default.
- W1824257344 cites W3211966597 @default.
- W1824257344 cites W3216003845 @default.
- W1824257344 hasPublicationYear "2013" @default.
- W1824257344 type Work @default.
- W1824257344 sameAs 1824257344 @default.
- W1824257344 citedByCount "1" @default.
- W1824257344 countsByYear W18242573442014 @default.
- W1824257344 crossrefType "posted-content" @default.
- W1824257344 hasAuthorship W1824257344A5015708841 @default.
- W1824257344 hasAuthorship W1824257344A5034000581 @default.
- W1824257344 hasConcept C105795698 @default.
- W1824257344 hasConcept C107673813 @default.
- W1824257344 hasConcept C118615104 @default.
- W1824257344 hasConcept C121332964 @default.
- W1824257344 hasConcept C134306372 @default.
- W1824257344 hasConcept C141898687 @default.
- W1824257344 hasConcept C177769412 @default.
- W1824257344 hasConcept C179254644 @default.
- W1824257344 hasConcept C191399826 @default.
- W1824257344 hasConcept C21031990 @default.
- W1824257344 hasConcept C2780009758 @default.
- W1824257344 hasConcept C28826006 @default.
- W1824257344 hasConcept C33923547 @default.
- W1824257344 hasConcept C41008148 @default.
- W1824257344 hasConcept C74193536 @default.
- W1824257344 hasConcept C74650414 @default.
- W1824257344 hasConcept C77088390 @default.
- W1824257344 hasConceptScore W1824257344C105795698 @default.
- W1824257344 hasConceptScore W1824257344C107673813 @default.
- W1824257344 hasConceptScore W1824257344C118615104 @default.
- W1824257344 hasConceptScore W1824257344C121332964 @default.
- W1824257344 hasConceptScore W1824257344C134306372 @default.
- W1824257344 hasConceptScore W1824257344C141898687 @default.
- W1824257344 hasConceptScore W1824257344C177769412 @default.
- W1824257344 hasConceptScore W1824257344C179254644 @default.
- W1824257344 hasConceptScore W1824257344C191399826 @default.
- W1824257344 hasConceptScore W1824257344C21031990 @default.
- W1824257344 hasConceptScore W1824257344C2780009758 @default.
- W1824257344 hasConceptScore W1824257344C28826006 @default.
- W1824257344 hasConceptScore W1824257344C33923547 @default.
- W1824257344 hasConceptScore W1824257344C41008148 @default.
- W1824257344 hasConceptScore W1824257344C74193536 @default.
- W1824257344 hasConceptScore W1824257344C74650414 @default.
- W1824257344 hasConceptScore W1824257344C77088390 @default.
- W1824257344 hasLocation W18242573441 @default.
- W1824257344 hasOpenAccess W1824257344 @default.
- W1824257344 hasPrimaryLocation W18242573441 @default.
- W1824257344 hasRelatedWork W1590281894 @default.
- W1824257344 hasRelatedWork W1803783558 @default.
- W1824257344 hasRelatedWork W2069690626 @default.
- W1824257344 hasRelatedWork W2094224252 @default.
- W1824257344 hasRelatedWork W2214915607 @default.
- W1824257344 hasRelatedWork W2231619971 @default.
- W1824257344 hasRelatedWork W2247178600 @default.
- W1824257344 hasRelatedWork W2320584409 @default.
- W1824257344 hasRelatedWork W2725347655 @default.
- W1824257344 hasRelatedWork W2739978539 @default.
- W1824257344 hasRelatedWork W2950463727 @default.
- W1824257344 hasRelatedWork W2952097853 @default.
- W1824257344 hasRelatedWork W2963761293 @default.
- W1824257344 hasRelatedWork W2972280403 @default.
- W1824257344 hasRelatedWork W3033389403 @default.
- W1824257344 hasRelatedWork W3036769475 @default.