Matches in SemOpenAlex for { <https://semopenalex.org/work/W1826489968> ?p ?o ?g. }
- W1826489968 endingPage "47" @default.
- W1826489968 startingPage "42" @default.
- W1826489968 abstract "The artificial neural network (ANN) theory is applied to thermal data obtained by non-isothermal thermogravimetric analysis (TGA) from room temperature to 1000°C at different heating rates in air to study co-combustion of hazelnut husk (HH)-lignite coal (LC) blends of various composition. The heating rate, blend ratio and temperature were used in the ANN analysis to predict the TG curves of the blends as parameters that affect the thermal behavior during combustion. The ANN model provides a good prediction of the TG curves for co-combustion with a coefficient of determination for the developed model of 0.9995. The agreement between the experimental data and the predicted values substantiated the accuracy of the ANN calculation." @default.
- W1826489968 created "2016-06-24" @default.
- W1826489968 creator A5018588286 @default.
- W1826489968 creator A5025221741 @default.
- W1826489968 creator A5047869818 @default.
- W1826489968 creator A5081506325 @default.
- W1826489968 date "2016-01-01" @default.
- W1826489968 modified "2023-10-13" @default.
- W1826489968 title "Application of artificial neural networks to co-combustion of hazelnut husk–lignite coal blends" @default.
- W1826489968 cites W1024496941 @default.
- W1826489968 cites W1866429230 @default.
- W1826489968 cites W1970121296 @default.
- W1826489968 cites W1973523103 @default.
- W1826489968 cites W1982613128 @default.
- W1826489968 cites W1996039992 @default.
- W1826489968 cites W1999369547 @default.
- W1826489968 cites W2000259272 @default.
- W1826489968 cites W2004443860 @default.
- W1826489968 cites W2005886881 @default.
- W1826489968 cites W2012602078 @default.
- W1826489968 cites W2022942101 @default.
- W1826489968 cites W2042604691 @default.
- W1826489968 cites W2042605171 @default.
- W1826489968 cites W2071481198 @default.
- W1826489968 cites W2078925671 @default.
- W1826489968 cites W2086821189 @default.
- W1826489968 cites W2140816718 @default.
- W1826489968 cites W288702228 @default.
- W1826489968 cites W416270167 @default.
- W1826489968 cites W586852915 @default.
- W1826489968 cites W809638804 @default.
- W1826489968 cites W994327344 @default.
- W1826489968 doi "https://doi.org/10.1016/j.biortech.2015.09.114" @default.
- W1826489968 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/26476163" @default.
- W1826489968 hasPublicationYear "2016" @default.
- W1826489968 type Work @default.
- W1826489968 sameAs 1826489968 @default.
- W1826489968 citedByCount "80" @default.
- W1826489968 countsByYear W18264899682016 @default.
- W1826489968 countsByYear W18264899682017 @default.
- W1826489968 countsByYear W18264899682018 @default.
- W1826489968 countsByYear W18264899682019 @default.
- W1826489968 countsByYear W18264899682020 @default.
- W1826489968 countsByYear W18264899682021 @default.
- W1826489968 countsByYear W18264899682022 @default.
- W1826489968 countsByYear W18264899682023 @default.
- W1826489968 crossrefType "journal-article" @default.
- W1826489968 hasAuthorship W1826489968A5018588286 @default.
- W1826489968 hasAuthorship W1826489968A5025221741 @default.
- W1826489968 hasAuthorship W1826489968A5047869818 @default.
- W1826489968 hasAuthorship W1826489968A5081506325 @default.
- W1826489968 hasConcept C105923489 @default.
- W1826489968 hasConcept C119857082 @default.
- W1826489968 hasConcept C121332964 @default.
- W1826489968 hasConcept C127413603 @default.
- W1826489968 hasConcept C133347239 @default.
- W1826489968 hasConcept C178790620 @default.
- W1826489968 hasConcept C185592680 @default.
- W1826489968 hasConcept C192562407 @default.
- W1826489968 hasConcept C39432304 @default.
- W1826489968 hasConcept C41008148 @default.
- W1826489968 hasConcept C42360764 @default.
- W1826489968 hasConcept C50644808 @default.
- W1826489968 hasConcept C518851703 @default.
- W1826489968 hasConcept C528095902 @default.
- W1826489968 hasConcept C548081761 @default.
- W1826489968 hasConcept C59822182 @default.
- W1826489968 hasConcept C60100273 @default.
- W1826489968 hasConcept C75296557 @default.
- W1826489968 hasConcept C86803240 @default.
- W1826489968 hasConcept C97355855 @default.
- W1826489968 hasConceptScore W1826489968C105923489 @default.
- W1826489968 hasConceptScore W1826489968C119857082 @default.
- W1826489968 hasConceptScore W1826489968C121332964 @default.
- W1826489968 hasConceptScore W1826489968C127413603 @default.
- W1826489968 hasConceptScore W1826489968C133347239 @default.
- W1826489968 hasConceptScore W1826489968C178790620 @default.
- W1826489968 hasConceptScore W1826489968C185592680 @default.
- W1826489968 hasConceptScore W1826489968C192562407 @default.
- W1826489968 hasConceptScore W1826489968C39432304 @default.
- W1826489968 hasConceptScore W1826489968C41008148 @default.
- W1826489968 hasConceptScore W1826489968C42360764 @default.
- W1826489968 hasConceptScore W1826489968C50644808 @default.
- W1826489968 hasConceptScore W1826489968C518851703 @default.
- W1826489968 hasConceptScore W1826489968C528095902 @default.
- W1826489968 hasConceptScore W1826489968C548081761 @default.
- W1826489968 hasConceptScore W1826489968C59822182 @default.
- W1826489968 hasConceptScore W1826489968C60100273 @default.
- W1826489968 hasConceptScore W1826489968C75296557 @default.
- W1826489968 hasConceptScore W1826489968C86803240 @default.
- W1826489968 hasConceptScore W1826489968C97355855 @default.
- W1826489968 hasLocation W18264899681 @default.
- W1826489968 hasLocation W18264899682 @default.
- W1826489968 hasOpenAccess W1826489968 @default.
- W1826489968 hasPrimaryLocation W18264899681 @default.
- W1826489968 hasRelatedWork W2020018705 @default.
- W1826489968 hasRelatedWork W2085895737 @default.
- W1826489968 hasRelatedWork W2348510516 @default.