Matches in SemOpenAlex for { <https://semopenalex.org/work/W1831139727> ?p ?o ?g. }
- W1831139727 abstract "Materials that can be manipulated electrically or mechanically to induce a change in their intrinsic properties are highly relevant when suitably integrated with current technologies. These materials, such as oxide-based ferroelectrics or materials with easily accessible changes of phase, find extensive use as mechanical resonators, solid-state memories, and optical modulators. Barium titanate, a tetragonal ferroelectric at room temperature, is a prime example of a material both mechanically and optically active. This thesis deals primarily with the deposition of active, oxide-based materials and their integration into device structures where either the mechanical or optical properties are exploited. The technologically interesting paradigms within which these active oxide materials have been investigated are microelectromechanical systems, plasmonics, and metamaterials. Microelectromechanical systems are devices that have been micromachined and rely on an applied voltage to induce a mechanical response. Mechanically active materials, such as piezoelectrics or ferroelectrics, can increase the response of these devices. Plasmonics deals with electromagnetic waves resonantly coupled into free electron oscillations at a metal-dielectric interface or metal nanoparticle. Coupling to these resonant modes allows surface plasmon polaritons to propagate along the metal with a nonlinear dispersion. Metamaterials are ordered, subwavelength, metal inclusions in a dielectric, which respond collectively to electromagnetic radiation. This response can yield a material permittivity or permeability not found in nature. The optical properties of metamaterials lead to effects such as negative index response and super lensing, and can be used to design optical cloaking structures. Here, devices utilizing these effects are investigated with an eye toward tuning or switching their resonant response using optically active oxide thin films. This manuscript follows the evolution of active oxide thin films from deposition, through design of plasmonic devices and active metamaterials, finite difference modeling of these structures, and finally experimental validation. First, deposition and material integration techniques for oxide-based thin films will be discussed. The role of molecular beam epitaxy, pulsed laser deposition, and ion beam assisted deposition as material growth techniques are investigated. Development of a multitude of oxide materials using these techniques including barium titanate, strontium ruthenate, vanadium oxide, and magnesium oxide will be covered. The following two sections deal with the mechanical and optical properties of barium titanate thin films as they are studied and utilized to design and fabricate active devices. Films were characterized mechanically, using nanoindentation and piezoresponse force microscopy, and optically with variable angle spectroscopic ellipsometry. The subsequent section deals with the design, fabrication, and experimental validation of an active optical device based on surface plasmon polariton wavevector modulation via electrooptic modulation of a barium titanate thin film. Interferometers based on pairs of parallel slits fabricated in silver films on barium titanate are used to investigate optical modulation due to both domain switching and the electrooptic effect. Finally, active metamaterials are discussed through the investigation of a new material, vanadium oxide, as it is deposited and characterized, and the results used to design and fabricate active, split-ring resonator metamaterial structures." @default.
- W1831139727 created "2016-06-24" @default.
- W1831139727 creator A5077970060 @default.
- W1831139727 date "2009-01-01" @default.
- W1831139727 modified "2023-09-23" @default.
- W1831139727 title "Active Oxide Nanophotonics" @default.
- W1831139727 cites W1498734336 @default.
- W1831139727 cites W1512109397 @default.
- W1831139727 cites W1572432597 @default.
- W1831139727 cites W1649808901 @default.
- W1831139727 cites W1667702574 @default.
- W1831139727 cites W1672766972 @default.
- W1831139727 cites W1822722359 @default.
- W1831139727 cites W184080816 @default.
- W1831139727 cites W1875177799 @default.
- W1831139727 cites W1966141191 @default.
- W1831139727 cites W1969144491 @default.
- W1831139727 cites W1969956275 @default.
- W1831139727 cites W1969963025 @default.
- W1831139727 cites W1974141948 @default.
- W1831139727 cites W1974339211 @default.
- W1831139727 cites W1975080837 @default.
- W1831139727 cites W1976493583 @default.
- W1831139727 cites W1978149208 @default.
- W1831139727 cites W1978348654 @default.
- W1831139727 cites W1982041296 @default.
- W1831139727 cites W1982922383 @default.
- W1831139727 cites W1986010303 @default.
- W1831139727 cites W1991441909 @default.
- W1831139727 cites W1993642098 @default.
- W1831139727 cites W1994994475 @default.
- W1831139727 cites W1995826316 @default.
- W1831139727 cites W2001896868 @default.
- W1831139727 cites W2002554890 @default.
- W1831139727 cites W2009321077 @default.
- W1831139727 cites W2011888588 @default.
- W1831139727 cites W2016927087 @default.
- W1831139727 cites W2017122011 @default.
- W1831139727 cites W2017752286 @default.
- W1831139727 cites W2021805666 @default.
- W1831139727 cites W2022997044 @default.
- W1831139727 cites W2023637636 @default.
- W1831139727 cites W2027652501 @default.
- W1831139727 cites W2030931666 @default.
- W1831139727 cites W2031235670 @default.
- W1831139727 cites W2031416737 @default.
- W1831139727 cites W2032494562 @default.
- W1831139727 cites W2038089153 @default.
- W1831139727 cites W2039096251 @default.
- W1831139727 cites W2040799726 @default.
- W1831139727 cites W2040882982 @default.
- W1831139727 cites W2040976339 @default.
- W1831139727 cites W2041836624 @default.
- W1831139727 cites W2043600628 @default.
- W1831139727 cites W2046676951 @default.
- W1831139727 cites W2048735459 @default.
- W1831139727 cites W2050673289 @default.
- W1831139727 cites W2051121787 @default.
- W1831139727 cites W2052557269 @default.
- W1831139727 cites W2053633409 @default.
- W1831139727 cites W2053791298 @default.
- W1831139727 cites W2054370029 @default.
- W1831139727 cites W2054536588 @default.
- W1831139727 cites W2061755261 @default.
- W1831139727 cites W2063944654 @default.
- W1831139727 cites W2067185989 @default.
- W1831139727 cites W2070088624 @default.
- W1831139727 cites W2072285389 @default.
- W1831139727 cites W2075926432 @default.
- W1831139727 cites W2076145212 @default.
- W1831139727 cites W2077839384 @default.
- W1831139727 cites W2079590052 @default.
- W1831139727 cites W2079609894 @default.
- W1831139727 cites W2086933933 @default.
- W1831139727 cites W2087536102 @default.
- W1831139727 cites W2088202037 @default.
- W1831139727 cites W2088456528 @default.
- W1831139727 cites W2095215376 @default.
- W1831139727 cites W2106371682 @default.
- W1831139727 cites W2106564588 @default.
- W1831139727 cites W2113212027 @default.
- W1831139727 cites W2122765624 @default.
- W1831139727 cites W2122948261 @default.
- W1831139727 cites W2123343298 @default.
- W1831139727 cites W2125713092 @default.
- W1831139727 cites W2135724787 @default.
- W1831139727 cites W2137938289 @default.
- W1831139727 cites W2148009103 @default.
- W1831139727 cites W2148020016 @default.
- W1831139727 cites W2150548818 @default.
- W1831139727 cites W2152923907 @default.
- W1831139727 cites W2154831337 @default.
- W1831139727 cites W2157609259 @default.
- W1831139727 cites W2162186602 @default.
- W1831139727 cites W2540351361 @default.
- W1831139727 cites W2606443948 @default.
- W1831139727 cites W2024067551 @default.
- W1831139727 cites W2901314768 @default.
- W1831139727 doi "https://doi.org/10.7907/wpbt-c144." @default.
- W1831139727 hasPublicationYear "2009" @default.