Matches in SemOpenAlex for { <https://semopenalex.org/work/W1832115302> ?p ?o ?g. }
- W1832115302 endingPage "2015" @default.
- W1832115302 startingPage "2015" @default.
- W1832115302 abstract "Computer-aided classification of lung nodules on computed tomography images via deep learning technique Kai-Lung Hua,1 Che-Hao Hsu,1 Shintami Chusnul Hidayati,1 Wen-Huang Cheng,2 Yu-Jen Chen3 1Department of Computer Science and Information Engineering, National Taiwan University of Science and Technology, 2Research Center for Information Technology Innovation, Academia Sinica, 3Department of Radiation Oncology, MacKay Memorial Hospital, Taipei, Taiwan Abstract: Lung cancer has a poor prognosis when not diagnosed early and unresectable lesions are present. The management of small lung nodules noted on computed tomography scan is controversial due to uncertain tumor characteristics. A conventional computer-aided diagnosis (CAD) scheme requires several image processing and pattern recognition steps to accomplish a quantitative tumor differentiation result. In such an ad hoc image analysis pipeline, every step depends heavily on the performance of the previous step. Accordingly, tuning of classification performance in a conventional CAD scheme is very complicated and arduous. Deep learning techniques, on the other hand, have the intrinsic advantage of an automatic exploitation feature and tuning of performance in a seamless fashion. In this study, we attempted to simplify the image analysis pipeline of conventional CAD with deep learning techniques. Specifically, we introduced models of a deep belief network and a convolutional neural network in the context of nodule classification in computed tomography images. Two baseline methods with feature computing steps were implemented for comparison. The experimental results suggest that deep learning methods could achieve better discriminative results and hold promise in the CAD application domain. Keywords: nodule classification, deep learning, deep belief network, convolutional neural network" @default.
- W1832115302 created "2016-06-24" @default.
- W1832115302 creator A5008833686 @default.
- W1832115302 creator A5035151641 @default.
- W1832115302 creator A5064655192 @default.
- W1832115302 creator A5066021753 @default.
- W1832115302 creator A5078436932 @default.
- W1832115302 date "2015-08-01" @default.
- W1832115302 modified "2023-10-06" @default.
- W1832115302 title "Computer-aided classification of lung nodules on computed tomography images via deep learning technique" @default.
- W1832115302 cites W1948745668 @default.
- W1832115302 cites W1986649315 @default.
- W1832115302 cites W2005992530 @default.
- W1832115302 cites W2034041856 @default.
- W1832115302 cites W2049013464 @default.
- W1832115302 cites W2049247029 @default.
- W1832115302 cites W2107226857 @default.
- W1832115302 cites W2133145320 @default.
- W1832115302 cites W2136325898 @default.
- W1832115302 cites W2136922672 @default.
- W1832115302 cites W2141619730 @default.
- W1832115302 cites W2161817637 @default.
- W1832115302 cites W2167896953 @default.
- W1832115302 doi "https://doi.org/10.2147/ott.s80733" @default.
- W1832115302 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4531007" @default.
- W1832115302 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/26346558" @default.
- W1832115302 hasPublicationYear "2015" @default.
- W1832115302 type Work @default.
- W1832115302 sameAs 1832115302 @default.
- W1832115302 citedByCount "191" @default.
- W1832115302 countsByYear W18321153022015 @default.
- W1832115302 countsByYear W18321153022016 @default.
- W1832115302 countsByYear W18321153022017 @default.
- W1832115302 countsByYear W18321153022018 @default.
- W1832115302 countsByYear W18321153022019 @default.
- W1832115302 countsByYear W18321153022020 @default.
- W1832115302 countsByYear W18321153022021 @default.
- W1832115302 countsByYear W18321153022022 @default.
- W1832115302 countsByYear W18321153022023 @default.
- W1832115302 crossrefType "journal-article" @default.
- W1832115302 hasAuthorship W1832115302A5008833686 @default.
- W1832115302 hasAuthorship W1832115302A5035151641 @default.
- W1832115302 hasAuthorship W1832115302A5064655192 @default.
- W1832115302 hasAuthorship W1832115302A5066021753 @default.
- W1832115302 hasAuthorship W1832115302A5078436932 @default.
- W1832115302 hasBestOaLocation W18321153021 @default.
- W1832115302 hasConcept C108583219 @default.
- W1832115302 hasConcept C115961682 @default.
- W1832115302 hasConcept C119857082 @default.
- W1832115302 hasConcept C127413603 @default.
- W1832115302 hasConcept C138885662 @default.
- W1832115302 hasConcept C151730666 @default.
- W1832115302 hasConcept C153180895 @default.
- W1832115302 hasConcept C154945302 @default.
- W1832115302 hasConcept C194789388 @default.
- W1832115302 hasConcept C199360897 @default.
- W1832115302 hasConcept C199639397 @default.
- W1832115302 hasConcept C2776401178 @default.
- W1832115302 hasConcept C2779343474 @default.
- W1832115302 hasConcept C2779549770 @default.
- W1832115302 hasConcept C41008148 @default.
- W1832115302 hasConcept C41895202 @default.
- W1832115302 hasConcept C43521106 @default.
- W1832115302 hasConcept C75294576 @default.
- W1832115302 hasConcept C81363708 @default.
- W1832115302 hasConcept C86803240 @default.
- W1832115302 hasConcept C97931131 @default.
- W1832115302 hasConceptScore W1832115302C108583219 @default.
- W1832115302 hasConceptScore W1832115302C115961682 @default.
- W1832115302 hasConceptScore W1832115302C119857082 @default.
- W1832115302 hasConceptScore W1832115302C127413603 @default.
- W1832115302 hasConceptScore W1832115302C138885662 @default.
- W1832115302 hasConceptScore W1832115302C151730666 @default.
- W1832115302 hasConceptScore W1832115302C153180895 @default.
- W1832115302 hasConceptScore W1832115302C154945302 @default.
- W1832115302 hasConceptScore W1832115302C194789388 @default.
- W1832115302 hasConceptScore W1832115302C199360897 @default.
- W1832115302 hasConceptScore W1832115302C199639397 @default.
- W1832115302 hasConceptScore W1832115302C2776401178 @default.
- W1832115302 hasConceptScore W1832115302C2779343474 @default.
- W1832115302 hasConceptScore W1832115302C2779549770 @default.
- W1832115302 hasConceptScore W1832115302C41008148 @default.
- W1832115302 hasConceptScore W1832115302C41895202 @default.
- W1832115302 hasConceptScore W1832115302C43521106 @default.
- W1832115302 hasConceptScore W1832115302C75294576 @default.
- W1832115302 hasConceptScore W1832115302C81363708 @default.
- W1832115302 hasConceptScore W1832115302C86803240 @default.
- W1832115302 hasConceptScore W1832115302C97931131 @default.
- W1832115302 hasLocation W18321153021 @default.
- W1832115302 hasLocation W18321153022 @default.
- W1832115302 hasLocation W18321153023 @default.
- W1832115302 hasLocation W18321153024 @default.
- W1832115302 hasOpenAccess W1832115302 @default.
- W1832115302 hasPrimaryLocation W18321153021 @default.
- W1832115302 hasRelatedWork W2038828201 @default.
- W1832115302 hasRelatedWork W2406522397 @default.
- W1832115302 hasRelatedWork W2766604260 @default.
- W1832115302 hasRelatedWork W2970216048 @default.