Matches in SemOpenAlex for { <https://semopenalex.org/work/W1834484028> ?p ?o ?g. }
- W1834484028 abstract "Many researchers have reported about the problems in modeling low‐magnitude flows while developing artificial neural network (ANN) rainfall‐runoff models trained using popular back propagation (BP) method and have suggested the use of alternative training methods. This paper presents the results of a new approach employing real‐coded genetic algorithms (GAs) to train ANN rainfall‐runoff models, which are able to overcome such problems. The paper also presents a new class of models termed gray box models that integrate deterministic and ANN techniques for hydrologic modeling. Daily rainfall and streamflow data from the Kentucky River watershed were employed to test the new approach. Many standard statistical measures were employed to assess and compare various models investigated. The results obtained in this study demonstrate that ANN rainfall‐runoff models trained using real‐coded GA are able to predict daily flow more accurately than the ANN rainfall‐runoff models trained using BP method. The proposed approach of training ANN models using real‐coded GA can significantly improve the estimation accuracy of the low‐magnitude flows. It was found that the gray box models that are capable of exploiting the advantages of both deterministic and ANN techniques perform better than the purely black box type ANN rainfall‐runoff models. A partitioning analysis of results is needed to evaluate the performance of various models in terms of their efficiency in modeling and effectiveness in accurately predicting varying magnitude flows (low, medium, and high flows)." @default.
- W1834484028 created "2016-06-24" @default.
- W1834484028 creator A5019152600 @default.
- W1834484028 creator A5039420577 @default.
- W1834484028 date "2004-04-01" @default.
- W1834484028 modified "2023-10-17" @default.
- W1834484028 title "Development of effective and efficient rainfall-runoff models using integration of deterministic, real-coded genetic algorithms and artificial neural network techniques" @default.
- W1834484028 cites W1498436455 @default.
- W1834484028 cites W1518635102 @default.
- W1834484028 cites W1966237354 @default.
- W1834484028 cites W1974195979 @default.
- W1834484028 cites W1999310382 @default.
- W1834484028 cites W2001220510 @default.
- W1834484028 cites W2002147749 @default.
- W1834484028 cites W2007396336 @default.
- W1834484028 cites W2011412119 @default.
- W1834484028 cites W2011433625 @default.
- W1834484028 cites W2017198208 @default.
- W1834484028 cites W2031292142 @default.
- W1834484028 cites W2032691163 @default.
- W1834484028 cites W2042748235 @default.
- W1834484028 cites W2047526842 @default.
- W1834484028 cites W2056907253 @default.
- W1834484028 cites W2063756720 @default.
- W1834484028 cites W2065560988 @default.
- W1834484028 cites W2074770406 @default.
- W1834484028 cites W2086573699 @default.
- W1834484028 cites W2087836750 @default.
- W1834484028 cites W2091620566 @default.
- W1834484028 cites W2093859742 @default.
- W1834484028 cites W2145479420 @default.
- W1834484028 cites W2157543243 @default.
- W1834484028 cites W2164017619 @default.
- W1834484028 cites W2167170348 @default.
- W1834484028 cites W2169758691 @default.
- W1834484028 cites W4300402905 @default.
- W1834484028 doi "https://doi.org/10.1029/2003wr002355" @default.
- W1834484028 hasPublicationYear "2004" @default.
- W1834484028 type Work @default.
- W1834484028 sameAs 1834484028 @default.
- W1834484028 citedByCount "197" @default.
- W1834484028 countsByYear W18344840282012 @default.
- W1834484028 countsByYear W18344840282013 @default.
- W1834484028 countsByYear W18344840282014 @default.
- W1834484028 countsByYear W18344840282015 @default.
- W1834484028 countsByYear W18344840282016 @default.
- W1834484028 countsByYear W18344840282017 @default.
- W1834484028 countsByYear W18344840282018 @default.
- W1834484028 countsByYear W18344840282019 @default.
- W1834484028 countsByYear W18344840282020 @default.
- W1834484028 countsByYear W18344840282021 @default.
- W1834484028 countsByYear W18344840282022 @default.
- W1834484028 countsByYear W18344840282023 @default.
- W1834484028 crossrefType "journal-article" @default.
- W1834484028 hasAuthorship W1834484028A5019152600 @default.
- W1834484028 hasAuthorship W1834484028A5039420577 @default.
- W1834484028 hasConcept C11413529 @default.
- W1834484028 hasConcept C119857082 @default.
- W1834484028 hasConcept C124101348 @default.
- W1834484028 hasConcept C126197015 @default.
- W1834484028 hasConcept C126645576 @default.
- W1834484028 hasConcept C127313418 @default.
- W1834484028 hasConcept C154945302 @default.
- W1834484028 hasConcept C18903297 @default.
- W1834484028 hasConcept C205649164 @default.
- W1834484028 hasConcept C41008148 @default.
- W1834484028 hasConcept C49204034 @default.
- W1834484028 hasConcept C50477045 @default.
- W1834484028 hasConcept C50644808 @default.
- W1834484028 hasConcept C53739315 @default.
- W1834484028 hasConcept C58640448 @default.
- W1834484028 hasConcept C86803240 @default.
- W1834484028 hasConcept C8880873 @default.
- W1834484028 hasConcept C94966114 @default.
- W1834484028 hasConceptScore W1834484028C11413529 @default.
- W1834484028 hasConceptScore W1834484028C119857082 @default.
- W1834484028 hasConceptScore W1834484028C124101348 @default.
- W1834484028 hasConceptScore W1834484028C126197015 @default.
- W1834484028 hasConceptScore W1834484028C126645576 @default.
- W1834484028 hasConceptScore W1834484028C127313418 @default.
- W1834484028 hasConceptScore W1834484028C154945302 @default.
- W1834484028 hasConceptScore W1834484028C18903297 @default.
- W1834484028 hasConceptScore W1834484028C205649164 @default.
- W1834484028 hasConceptScore W1834484028C41008148 @default.
- W1834484028 hasConceptScore W1834484028C49204034 @default.
- W1834484028 hasConceptScore W1834484028C50477045 @default.
- W1834484028 hasConceptScore W1834484028C50644808 @default.
- W1834484028 hasConceptScore W1834484028C53739315 @default.
- W1834484028 hasConceptScore W1834484028C58640448 @default.
- W1834484028 hasConceptScore W1834484028C86803240 @default.
- W1834484028 hasConceptScore W1834484028C8880873 @default.
- W1834484028 hasConceptScore W1834484028C94966114 @default.
- W1834484028 hasIssue "4" @default.
- W1834484028 hasLocation W18344840281 @default.
- W1834484028 hasOpenAccess W1834484028 @default.
- W1834484028 hasPrimaryLocation W18344840281 @default.
- W1834484028 hasRelatedWork W105199006 @default.
- W1834484028 hasRelatedWork W2061279527 @default.
- W1834484028 hasRelatedWork W2068368507 @default.
- W1834484028 hasRelatedWork W2335811955 @default.