Matches in SemOpenAlex for { <https://semopenalex.org/work/W1837005764> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W1837005764 endingPage "315" @default.
- W1837005764 startingPage "297" @default.
- W1837005764 abstract "SUMMARY Motivated by the increasing importance of large‐scale networks typically modeled by graphs, this paper is concerned with the development of mathematical tools for solving problems associated with the popular graph Laplacian. We exploit its mixed formulation based on its natural factorization as product of two operators. The goal is to construct a coarse version of the mixed graph Laplacian operator with the purpose to construct two‐level, and by recursion, a multilevel hierarchy of graphs and associated operators. In many situations in practice, having a coarse (i.e., reduced dimension) model that maintains some inherent features of the original large‐scale graph and respective graph Laplacian offers potential to develop efficient algorithms to analyze the underlined network modeled by this large‐scale graph. One possible application of such a hierarchy is to develop multilevel methods that have the potential to be of optimal complexity. In this paper, we consider general (connected) graphs and function spaces defined on its edges and its vertices. These two spaces are related by a discrete gradient operator, ‘Grad’ and its adjoint, ‘ − Div’, referred to as (negative) discrete divergence. We also consider a coarse graph obtained by aggregation of vertices of the original one. Then, a coarse vertex space is identified with the subspace of piecewise constant functions over the aggregates. We consider the ℓ 2 ‐projection Q H onto the space of these piecewise constants. In the present paper, our main result is the construction of a projection π H from the original edge‐space onto a properly constructed coarse edge‐space associated with the edges of the coarse graph. The projections π H and Q H commute with the discrete divergence operator, that is, we have Div π H = Q H div. The respective pair of coarse edge‐space and coarse vertex‐space offer the potential to construct two‐level, and by recursion, multilevel methods for the mixed formulation of the graph Laplacian, which utilizes the discrete divergence operator. The performance of one two‐level method with overlapping Schwarz smoothing and correction based on the constructed coarse spaces for solving such mixed graph Laplacian systems is illustrated on a number of graph examples. Copyright © 2013 John Wiley & Sons, Ltd." @default.
- W1837005764 created "2016-06-24" @default.
- W1837005764 creator A5027636165 @default.
- W1837005764 creator A5074536850 @default.
- W1837005764 date "2013-02-19" @default.
- W1837005764 modified "2023-10-05" @default.
- W1837005764 title "Commuting projections on graphs" @default.
- W1837005764 cites W1708679080 @default.
- W1837005764 cites W1885889690 @default.
- W1837005764 cites W2038098381 @default.
- W1837005764 cites W2046618600 @default.
- W1837005764 cites W2070448527 @default.
- W1837005764 cites W2086119402 @default.
- W1837005764 cites W2089139137 @default.
- W1837005764 cites W2099957444 @default.
- W1837005764 cites W2142304406 @default.
- W1837005764 cites W4234386603 @default.
- W1837005764 cites W4238452917 @default.
- W1837005764 doi "https://doi.org/10.1002/nla.1872" @default.
- W1837005764 hasPublicationYear "2013" @default.
- W1837005764 type Work @default.
- W1837005764 sameAs 1837005764 @default.
- W1837005764 citedByCount "7" @default.
- W1837005764 countsByYear W18370057642015 @default.
- W1837005764 countsByYear W18370057642017 @default.
- W1837005764 countsByYear W18370057642018 @default.
- W1837005764 countsByYear W18370057642020 @default.
- W1837005764 countsByYear W18370057642021 @default.
- W1837005764 crossrefType "journal-article" @default.
- W1837005764 hasAuthorship W1837005764A5027636165 @default.
- W1837005764 hasAuthorship W1837005764A5074536850 @default.
- W1837005764 hasBestOaLocation W18370057642 @default.
- W1837005764 hasConcept C11413529 @default.
- W1837005764 hasConcept C114614502 @default.
- W1837005764 hasConcept C118615104 @default.
- W1837005764 hasConcept C132525143 @default.
- W1837005764 hasConcept C134306372 @default.
- W1837005764 hasConcept C164660894 @default.
- W1837005764 hasConcept C165700671 @default.
- W1837005764 hasConcept C203776342 @default.
- W1837005764 hasConcept C33923547 @default.
- W1837005764 hasConcept C43517604 @default.
- W1837005764 hasConcept C57493831 @default.
- W1837005764 hasConcept C68103157 @default.
- W1837005764 hasConcept C80899671 @default.
- W1837005764 hasConceptScore W1837005764C11413529 @default.
- W1837005764 hasConceptScore W1837005764C114614502 @default.
- W1837005764 hasConceptScore W1837005764C118615104 @default.
- W1837005764 hasConceptScore W1837005764C132525143 @default.
- W1837005764 hasConceptScore W1837005764C134306372 @default.
- W1837005764 hasConceptScore W1837005764C164660894 @default.
- W1837005764 hasConceptScore W1837005764C165700671 @default.
- W1837005764 hasConceptScore W1837005764C203776342 @default.
- W1837005764 hasConceptScore W1837005764C33923547 @default.
- W1837005764 hasConceptScore W1837005764C43517604 @default.
- W1837005764 hasConceptScore W1837005764C57493831 @default.
- W1837005764 hasConceptScore W1837005764C68103157 @default.
- W1837005764 hasConceptScore W1837005764C80899671 @default.
- W1837005764 hasIssue "3" @default.
- W1837005764 hasLocation W18370057641 @default.
- W1837005764 hasLocation W18370057642 @default.
- W1837005764 hasOpenAccess W1837005764 @default.
- W1837005764 hasPrimaryLocation W18370057641 @default.
- W1837005764 hasRelatedWork W1719252778 @default.
- W1837005764 hasRelatedWork W2003008160 @default.
- W1837005764 hasRelatedWork W2029120765 @default.
- W1837005764 hasRelatedWork W2031098440 @default.
- W1837005764 hasRelatedWork W2368524975 @default.
- W1837005764 hasRelatedWork W2381713449 @default.
- W1837005764 hasRelatedWork W2466894780 @default.
- W1837005764 hasRelatedWork W3092119098 @default.
- W1837005764 hasRelatedWork W4307385446 @default.
- W1837005764 hasRelatedWork W4386875525 @default.
- W1837005764 hasVolume "21" @default.
- W1837005764 isParatext "false" @default.
- W1837005764 isRetracted "false" @default.
- W1837005764 magId "1837005764" @default.
- W1837005764 workType "article" @default.