Matches in SemOpenAlex for { <https://semopenalex.org/work/W1837105840> ?p ?o ?g. }
- W1837105840 endingPage "1300" @default.
- W1837105840 startingPage "1281" @default.
- W1837105840 abstract "Purpose – Selection of logistics service provider (LSP) (also known as Third-party logistics (3PL) is a critical decision, because logistics affects top and bottom line as well. Companies consider logistics as a cost driver and at the time of LSP selection decision, many important decision criteria’s are left out. 3PL selection is multi-criteria decision-making process. The purpose of this paper is to develop an integrated approach, combining quality function deployment (QFD), and Taguchi loss function (TLF) to select optimal 3PL. Design/methodology/approach – Multiple criteria are derived from the company requirements using house of quality. The 3PL service attributes are developed using QFD and the relative importance of the attributes are assessed. TLFs are used to measure performance of each 3PL on each decision variable. Composite weighted loss scores are used to rank 3PLs. Findings – QFD is a better tool which connects attributes used in a decision problem to decision maker’s requirements. In total, 15 criteria were used and TLF provides performance on these criteria. Practical implications – The proposed model provides a methodology to make informed decision related to 3PL selection. The proposed model may be converted into decision support system. Originality/value – Proposed approach in this paper is a novel approach that connects the 3PL selection problem to practice in terms of identifying criteria’s and provides a single numerical value in terms of Taghui loss." @default.
- W1837105840 created "2016-06-24" @default.
- W1837105840 creator A5004555198 @default.
- W1837105840 creator A5061484983 @default.
- W1837105840 date "2015-10-05" @default.
- W1837105840 modified "2023-09-25" @default.
- W1837105840 title "Optimal selection of third-party logistics service providers using quality function deployment and Taguchi loss function" @default.
- W1837105840 cites W1531519071 @default.
- W1837105840 cites W1965417368 @default.
- W1837105840 cites W1972925461 @default.
- W1837105840 cites W1973090717 @default.
- W1837105840 cites W1974518102 @default.
- W1837105840 cites W1985317711 @default.
- W1837105840 cites W1987177581 @default.
- W1837105840 cites W1987533647 @default.
- W1837105840 cites W1989586108 @default.
- W1837105840 cites W1990255256 @default.
- W1837105840 cites W1996370028 @default.
- W1837105840 cites W1998051362 @default.
- W1837105840 cites W1998266854 @default.
- W1837105840 cites W1998689808 @default.
- W1837105840 cites W1999637227 @default.
- W1837105840 cites W2001560494 @default.
- W1837105840 cites W2005674611 @default.
- W1837105840 cites W2006654301 @default.
- W1837105840 cites W2007606594 @default.
- W1837105840 cites W2012029939 @default.
- W1837105840 cites W2012635884 @default.
- W1837105840 cites W2012941705 @default.
- W1837105840 cites W2013652276 @default.
- W1837105840 cites W2014611280 @default.
- W1837105840 cites W2017653401 @default.
- W1837105840 cites W2018261044 @default.
- W1837105840 cites W2022231479 @default.
- W1837105840 cites W2023376144 @default.
- W1837105840 cites W2025347317 @default.
- W1837105840 cites W2025578168 @default.
- W1837105840 cites W2027163437 @default.
- W1837105840 cites W2032997902 @default.
- W1837105840 cites W2034312531 @default.
- W1837105840 cites W2036340310 @default.
- W1837105840 cites W2040840006 @default.
- W1837105840 cites W2041968086 @default.
- W1837105840 cites W2046841836 @default.
- W1837105840 cites W2050629115 @default.
- W1837105840 cites W2051326444 @default.
- W1837105840 cites W2051541750 @default.
- W1837105840 cites W2061239229 @default.
- W1837105840 cites W2061610670 @default.
- W1837105840 cites W2063769271 @default.
- W1837105840 cites W2065262720 @default.
- W1837105840 cites W2066712162 @default.
- W1837105840 cites W2072140033 @default.
- W1837105840 cites W2074472904 @default.
- W1837105840 cites W2075828643 @default.
- W1837105840 cites W2086229347 @default.
- W1837105840 cites W2086350717 @default.
- W1837105840 cites W2087170196 @default.
- W1837105840 cites W2092620885 @default.
- W1837105840 cites W2097359812 @default.
- W1837105840 cites W2122622224 @default.
- W1837105840 cites W2141189453 @default.
- W1837105840 cites W2143788402 @default.
- W1837105840 cites W2151124326 @default.
- W1837105840 cites W2339815665 @default.
- W1837105840 cites W2503074093 @default.
- W1837105840 doi "https://doi.org/10.1108/bij-02-2014-0016" @default.
- W1837105840 hasPublicationYear "2015" @default.
- W1837105840 type Work @default.
- W1837105840 sameAs 1837105840 @default.
- W1837105840 citedByCount "38" @default.
- W1837105840 countsByYear W18371058402016 @default.
- W1837105840 countsByYear W18371058402017 @default.
- W1837105840 countsByYear W18371058402018 @default.
- W1837105840 countsByYear W18371058402019 @default.
- W1837105840 countsByYear W18371058402020 @default.
- W1837105840 countsByYear W18371058402021 @default.
- W1837105840 countsByYear W18371058402022 @default.
- W1837105840 countsByYear W18371058402023 @default.
- W1837105840 crossrefType "journal-article" @default.
- W1837105840 hasAuthorship W1837105840A5004555198 @default.
- W1837105840 hasAuthorship W1837105840A5061484983 @default.
- W1837105840 hasConcept C11105738 @default.
- W1837105840 hasConcept C111472728 @default.
- W1837105840 hasConcept C112930515 @default.
- W1837105840 hasConcept C116537 @default.
- W1837105840 hasConcept C119857082 @default.
- W1837105840 hasConcept C127413603 @default.
- W1837105840 hasConcept C138885662 @default.
- W1837105840 hasConcept C14036430 @default.
- W1837105840 hasConcept C144133560 @default.
- W1837105840 hasConcept C154945302 @default.
- W1837105840 hasConcept C162853370 @default.
- W1837105840 hasConcept C189430467 @default.
- W1837105840 hasConcept C200601418 @default.
- W1837105840 hasConcept C21547014 @default.
- W1837105840 hasConcept C2779530757 @default.
- W1837105840 hasConcept C2780378061 @default.