Matches in SemOpenAlex for { <https://semopenalex.org/work/W1837118459> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W1837118459 endingPage "4108" @default.
- W1837118459 startingPage "4085" @default.
- W1837118459 abstract "An infinite dimensional notion of asymptotic structure is considered. This notion is developed in terms of trees and branches on Banach spaces. Every countably infinite countably branching tree <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=script upper T> <mml:semantics> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi class=MJX-tex-caligraphic mathvariant=script>T</mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>mathcal {T}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of a certain type on a space <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper X> <mml:semantics> <mml:mi>X</mml:mi> <mml:annotation encoding=application/x-tex>X</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is presumed to have a branch with some property. It is shown that then <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper X> <mml:semantics> <mml:mi>X</mml:mi> <mml:annotation encoding=application/x-tex>X</mml:annotation> </mml:semantics> </mml:math> </inline-formula> can be embedded into a space with an FDD <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=left-parenthesis upper E Subscript i Baseline right-parenthesis> <mml:semantics> <mml:mrow> <mml:mo stretchy=false>(</mml:mo> <mml:msub> <mml:mi>E</mml:mi> <mml:mi>i</mml:mi> </mml:msub> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>(E_i)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> so that all normalized sequences in <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper X> <mml:semantics> <mml:mi>X</mml:mi> <mml:annotation encoding=application/x-tex>X</mml:annotation> </mml:semantics> </mml:math> </inline-formula> which are almost a skipped blocking of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=left-parenthesis upper E Subscript i Baseline right-parenthesis> <mml:semantics> <mml:mrow> <mml:mo stretchy=false>(</mml:mo> <mml:msub> <mml:mi>E</mml:mi> <mml:mi>i</mml:mi> </mml:msub> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>(E_i)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> have that property. As an application of our work we prove that if <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper X> <mml:semantics> <mml:mi>X</mml:mi> <mml:annotation encoding=application/x-tex>X</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a separable reflexive Banach space and for some <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=1 greater-than p greater-than normal infinity> <mml:semantics> <mml:mrow> <mml:mn>1</mml:mn> <mml:mo>></mml:mo> <mml:mi>p</mml:mi> <mml:mo>></mml:mo> <mml:mi mathvariant=normal>∞<!-- ∞ --></mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>1>p>infty</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper C greater-than normal infinity> <mml:semantics> <mml:mrow> <mml:mi>C</mml:mi> <mml:mo>></mml:mo> <mml:mi mathvariant=normal>∞<!-- ∞ --></mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>C>infty</mml:annotation> </mml:semantics> </mml:math> </inline-formula> every weakly null tree <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=script upper T> <mml:semantics> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi class=MJX-tex-caligraphic mathvariant=script>T</mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>mathcal {T}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> on the sphere of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper X> <mml:semantics> <mml:mi>X</mml:mi> <mml:annotation encoding=application/x-tex>X</mml:annotation> </mml:semantics> </mml:math> </inline-formula> has a branch <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper C> <mml:semantics> <mml:mi>C</mml:mi> <mml:annotation encoding=application/x-tex>C</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-equivalent to the unit vector basis of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=script l Subscript p> <mml:semantics> <mml:msub> <mml:mi>ℓ<!-- ℓ --></mml:mi> <mml:mi>p</mml:mi> </mml:msub> <mml:annotation encoding=application/x-tex>ell _p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, then for all <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=epsilon greater-than 0> <mml:semantics> <mml:mrow> <mml:mi>ε<!-- ε --></mml:mi> <mml:mo>></mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding=application/x-tex>varepsilon >0</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, there exists a subspace of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper X> <mml:semantics> <mml:mi>X</mml:mi> <mml:annotation encoding=application/x-tex>X</mml:annotation> </mml:semantics> </mml:math> </inline-formula> having finite codimension which <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper C squared plus epsilon> <mml:semantics> <mml:mrow> <mml:msup> <mml:mi>C</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:mo>+</mml:mo> <mml:mi>ε<!-- ε --></mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>C^2+varepsilon</mml:annotation> </mml:semantics> </mml:math> </inline-formula> embeds into the <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=script l Subscript p> <mml:semantics> <mml:msub> <mml:mi>ℓ<!-- ℓ --></mml:mi> <mml:mi>p</mml:mi> </mml:msub> <mml:annotation encoding=application/x-tex>ell _p</mml:annotation> </mml:semantics> </mml:math> </inline-formula> sum of finite dimensional spaces." @default.
- W1837118459 created "2016-06-24" @default.
- W1837118459 creator A5009865100 @default.
- W1837118459 creator A5021250393 @default.
- W1837118459 date "2002-05-20" @default.
- W1837118459 modified "2023-10-18" @default.
- W1837118459 title "Trees and branches in Banach spaces" @default.
- W1837118459 cites W1596385175 @default.
- W1837118459 cites W1754286434 @default.
- W1837118459 cites W1789675836 @default.
- W1837118459 cites W1969222196 @default.
- W1837118459 cites W2003874933 @default.
- W1837118459 cites W2007810353 @default.
- W1837118459 cites W2086889529 @default.
- W1837118459 cites W2087906067 @default.
- W1837118459 cites W4248784701 @default.
- W1837118459 cites W4256157456 @default.
- W1837118459 doi "https://doi.org/10.1090/s0002-9947-02-02984-7" @default.
- W1837118459 hasPublicationYear "2002" @default.
- W1837118459 type Work @default.
- W1837118459 sameAs 1837118459 @default.
- W1837118459 citedByCount "71" @default.
- W1837118459 countsByYear W18371184592012 @default.
- W1837118459 countsByYear W18371184592013 @default.
- W1837118459 countsByYear W18371184592014 @default.
- W1837118459 countsByYear W18371184592015 @default.
- W1837118459 countsByYear W18371184592016 @default.
- W1837118459 countsByYear W18371184592017 @default.
- W1837118459 countsByYear W18371184592018 @default.
- W1837118459 countsByYear W18371184592019 @default.
- W1837118459 countsByYear W18371184592020 @default.
- W1837118459 countsByYear W18371184592021 @default.
- W1837118459 crossrefType "journal-article" @default.
- W1837118459 hasAuthorship W1837118459A5009865100 @default.
- W1837118459 hasAuthorship W1837118459A5021250393 @default.
- W1837118459 hasBestOaLocation W18371184591 @default.
- W1837118459 hasConcept C11413529 @default.
- W1837118459 hasConcept C154945302 @default.
- W1837118459 hasConcept C18903297 @default.
- W1837118459 hasConcept C2776321320 @default.
- W1837118459 hasConcept C2777299769 @default.
- W1837118459 hasConcept C33923547 @default.
- W1837118459 hasConcept C41008148 @default.
- W1837118459 hasConcept C86803240 @default.
- W1837118459 hasConceptScore W1837118459C11413529 @default.
- W1837118459 hasConceptScore W1837118459C154945302 @default.
- W1837118459 hasConceptScore W1837118459C18903297 @default.
- W1837118459 hasConceptScore W1837118459C2776321320 @default.
- W1837118459 hasConceptScore W1837118459C2777299769 @default.
- W1837118459 hasConceptScore W1837118459C33923547 @default.
- W1837118459 hasConceptScore W1837118459C41008148 @default.
- W1837118459 hasConceptScore W1837118459C86803240 @default.
- W1837118459 hasIssue "10" @default.
- W1837118459 hasLocation W18371184591 @default.
- W1837118459 hasOpenAccess W1837118459 @default.
- W1837118459 hasPrimaryLocation W18371184591 @default.
- W1837118459 hasRelatedWork W1979597421 @default.
- W1837118459 hasRelatedWork W2007980826 @default.
- W1837118459 hasRelatedWork W2218034408 @default.
- W1837118459 hasRelatedWork W2263699433 @default.
- W1837118459 hasRelatedWork W2358755282 @default.
- W1837118459 hasRelatedWork W2361861616 @default.
- W1837118459 hasRelatedWork W2377979023 @default.
- W1837118459 hasRelatedWork W2392921965 @default.
- W1837118459 hasRelatedWork W2625833328 @default.
- W1837118459 hasRelatedWork W4245490552 @default.
- W1837118459 hasVolume "354" @default.
- W1837118459 isParatext "false" @default.
- W1837118459 isRetracted "false" @default.
- W1837118459 magId "1837118459" @default.
- W1837118459 workType "article" @default.