Matches in SemOpenAlex for { <https://semopenalex.org/work/W183722209> ?p ?o ?g. }
- W183722209 abstract "Three in-process surface roughness prediction (ISRP) systems using linear multiple regression, fuzzy logic, and fuzzy nets algorisms, respectively, were developed to allow the prediction of real time surface roughness of a work piece on a turning operation. The surface roughness is predicted from feed rate, spindle speed, depth of cut. and machining vibration that is detected and collected by an accelerometer. A multiple regression based ISRP system was developed and examined. Feed rate, spindle speed, depth of cut and vibration average amplitude were employed as independent variables to predict surface roughness of the work piece in a turning operation in a real time fashion. Two groups of data were collected for two cutters with nose radii of 0.016 and 0.031 inches, respective. A total of 162 training data sets and 54 testing data sets for each cutter were applied to train and test the system. This ISRP system reached a prediction accuracy of averagely 92.78% in predicting the in-process surface roughness. The fuzzy logic modeling methodology was practiced to develop another ISRP system. Expert's experiences and experimental observations were the major sources to the generation of the fuzzy rule bank. By applying the fuzzy logic algorism, this system reached an average prediction accuracy of 89.06%. A Fuzzy-Nets-based in-process surface roughness prediction (FISRP) system was developed as the third to predict surface roughness in a turning operation in a real time on line fashion. The input variables of the FISRP system were machining parameters, such as feed rate, spindle speed, depth of cut. and average vibration amplitude per revolution. Fuzzy nets theory has been implemented to use experimental data in developing this FISRP system for real time prediction. The fuzzy nets theory consists of a five-step learning mechanism of developing knowledge base for predicting surface roughness on-line in real time. This FISRP system was developed and tested via experiments, and has been tested to have an average accuracy of 95.70%. The Fuzzy-nets-based In-process Surface Roughness Prediction System was considered the best among the three tested systems. This conclusion relies on not only the best average prediction accuracy achieved, but also the self-learning ability of the fuzzy nets algorism. In conclusion, the developed in-process surface roughness prediction system is capable to predict the in-process surface roughness of the work piece in a turning operation from feed rate, spindle speed, depth of cut and average vibration amplitude. With the developed Fuzzy-nets-based In-process Surface Roughness Prediction System, the prediction can reach an average accuracy of 95.70%." @default.
- W183722209 created "2016-06-24" @default.
- W183722209 creator A5017758749 @default.
- W183722209 date "2018-08-13" @default.
- W183722209 modified "2023-09-25" @default.
- W183722209 title "The development of in-process surface roughness prediction systems in turning operation using accelerometer" @default.
- W183722209 cites W1480947993 @default.
- W183722209 cites W1485846750 @default.
- W183722209 cites W1497066536 @default.
- W183722209 cites W1562687546 @default.
- W183722209 cites W1592091759 @default.
- W183722209 cites W1718200447 @default.
- W183722209 cites W185205451 @default.
- W183722209 cites W1902998716 @default.
- W183722209 cites W1972006231 @default.
- W183722209 cites W1974419365 @default.
- W183722209 cites W1974501209 @default.
- W183722209 cites W1979778933 @default.
- W183722209 cites W1981292027 @default.
- W183722209 cites W1989783503 @default.
- W183722209 cites W1991175162 @default.
- W183722209 cites W1995416777 @default.
- W183722209 cites W2011052892 @default.
- W183722209 cites W2011752128 @default.
- W183722209 cites W2012954938 @default.
- W183722209 cites W2016143777 @default.
- W183722209 cites W2016306194 @default.
- W183722209 cites W2018027217 @default.
- W183722209 cites W2022523243 @default.
- W183722209 cites W2024974965 @default.
- W183722209 cites W2028267826 @default.
- W183722209 cites W2034151018 @default.
- W183722209 cites W2034639599 @default.
- W183722209 cites W2049337726 @default.
- W183722209 cites W2050288270 @default.
- W183722209 cites W2059906303 @default.
- W183722209 cites W2061299059 @default.
- W183722209 cites W2065769231 @default.
- W183722209 cites W2066735789 @default.
- W183722209 cites W2068321321 @default.
- W183722209 cites W2084397136 @default.
- W183722209 cites W2085483421 @default.
- W183722209 cites W2095331631 @default.
- W183722209 cites W2096768134 @default.
- W183722209 cites W2101109938 @default.
- W183722209 cites W2102634648 @default.
- W183722209 cites W2130537002 @default.
- W183722209 cites W2136035344 @default.
- W183722209 cites W2149012541 @default.
- W183722209 cites W2151606839 @default.
- W183722209 cites W2154804123 @default.
- W183722209 cites W2172243598 @default.
- W183722209 cites W2622105632 @default.
- W183722209 cites W2739616593 @default.
- W183722209 cites W2767905780 @default.
- W183722209 cites W2914309308 @default.
- W183722209 cites W2966083286 @default.
- W183722209 cites W301275677 @default.
- W183722209 cites W3153014723 @default.
- W183722209 cites W582927298 @default.
- W183722209 cites W592848283 @default.
- W183722209 cites W635507760 @default.
- W183722209 cites W63896392 @default.
- W183722209 cites W755170429 @default.
- W183722209 cites W88166040 @default.
- W183722209 cites W2478037320 @default.
- W183722209 doi "https://doi.org/10.31274/rtd-180813-190" @default.
- W183722209 hasPublicationYear "2018" @default.
- W183722209 type Work @default.
- W183722209 sameAs 183722209 @default.
- W183722209 citedByCount "0" @default.
- W183722209 crossrefType "dissertation" @default.
- W183722209 hasAuthorship W183722209A5017758749 @default.
- W183722209 hasBestOaLocation W1837222091 @default.
- W183722209 hasConcept C107365816 @default.
- W183722209 hasConcept C121332964 @default.
- W183722209 hasConcept C127413603 @default.
- W183722209 hasConcept C154945302 @default.
- W183722209 hasConcept C159985019 @default.
- W183722209 hasConcept C192562407 @default.
- W183722209 hasConcept C198394728 @default.
- W183722209 hasConcept C24890656 @default.
- W183722209 hasConcept C41008148 @default.
- W183722209 hasConcept C523214423 @default.
- W183722209 hasConcept C58166 @default.
- W183722209 hasConcept C71039073 @default.
- W183722209 hasConcept C78519656 @default.
- W183722209 hasConceptScore W183722209C107365816 @default.
- W183722209 hasConceptScore W183722209C121332964 @default.
- W183722209 hasConceptScore W183722209C127413603 @default.
- W183722209 hasConceptScore W183722209C154945302 @default.
- W183722209 hasConceptScore W183722209C159985019 @default.
- W183722209 hasConceptScore W183722209C192562407 @default.
- W183722209 hasConceptScore W183722209C198394728 @default.
- W183722209 hasConceptScore W183722209C24890656 @default.
- W183722209 hasConceptScore W183722209C41008148 @default.
- W183722209 hasConceptScore W183722209C523214423 @default.
- W183722209 hasConceptScore W183722209C58166 @default.
- W183722209 hasConceptScore W183722209C71039073 @default.
- W183722209 hasConceptScore W183722209C78519656 @default.