Matches in SemOpenAlex for { <https://semopenalex.org/work/W1837278375> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W1837278375 abstract "The Self Organizing Map (SOM) proposed by T.Kohonen (1982), has been widely used in industrial applications such as pattern recognition, biological modelling, data compression, signal processing and data mining (T. Kohonen, 1997; M.N.M Sap and E. Mohebi, 2008a, 2008b, 2008c). It is an unsupervised and nonparametric neural network approach. The success of the SOM algorithm lies in its simplicity that makes it easy to understand, simulate and be used in many applications. The basic SOM consists of neurons usually arranged in a two-dimensional structure such that there are neighbourhood relations among the neurons. After completion of training, each neuron is attached to a feature vector of the same dimension as input space. By assigning each input vector to the neuron with nearest feature vectors, the SOM is able to divide the input space into regions (clusters) with common nearest feature vectors. This process can be considered as performing vector quantization (VQ) (R.M. Gray, 1984). In addition, because of the neighborhood relation contributed by the inter-connections among neurons, the SOM exhibits another important property of topology preservation. Clustering algorithms attempt to organize unlabeled input vectors into clusters such that points within the cluster are more similar to each other than vectors belonging to different clusters (N. R. Pal, et al., 1993). The clustering methods are of five types: hierarchical clustering, partitioning clustering, density-based clustering, grid-based clustering and model-based clustering (J. Han and M. Kamber, 2000). The rough set theory employs two upper and lower thresholds in the clustering process, which result in a rough clusters appearance. This technique also could be defined in incremental order i.e. the number of clusters is not predefined by users. In this chapter, a new two-level clustering algorithm is proposed. The idea is that the first level is to train the data by the SOM neural network and then clustering at the second level is a rough set based incremental clustering approach (S. Ashraf, et al., 2006), which will be applied on the output of SOM and requires only a single neurons scan. The optimal number of clusters can be found by rough set theory, which groups the given neurons into a set of overlapping clusters (clusters the mapped data respectively). Then the overlapped neurons will be assigned to the true clusters they belong to, by apply simulated annealing algorithm. A simulated annealing algorithm has been adopted to minimize the uncertainty that comes from some clustering operations. In our previous work (M.N.M. Sap and E. Mohebi, 2008a) the hybrid SOM and rough set has been applied to catch the overlapped data only, but the experiment results show that the proposed algorithm (SA-Rough SOM) outperforms the previous one. This chapter is organized as following; in section 2, the basics of SOM algorithm are outlined. The Incremental Clustering and Rough set theory are described in section 3. In section 4, the essence of simulated annealing is described. The proposed algorithm is presented in section 5. Section 6 is dedicated to experiment results, section 7 provides brief conclusion, and future works and an outline of the chapter summary is described in section 8." @default.
- W1837278375 created "2016-06-24" @default.
- W1837278375 creator A5019686683 @default.
- W1837278375 creator A5088516591 @default.
- W1837278375 date "2008-01-01" @default.
- W1837278375 modified "2023-09-28" @default.
- W1837278375 title "An optimized self organizing map for cluster ambiguity detection" @default.
- W1837278375 hasPublicationYear "2008" @default.
- W1837278375 type Work @default.
- W1837278375 sameAs 1837278375 @default.
- W1837278375 citedByCount "0" @default.
- W1837278375 crossrefType "book-chapter" @default.
- W1837278375 hasAuthorship W1837278375A5019686683 @default.
- W1837278375 hasAuthorship W1837278375A5088516591 @default.
- W1837278375 hasConcept C111168008 @default.
- W1837278375 hasConcept C124101348 @default.
- W1837278375 hasConcept C153180895 @default.
- W1837278375 hasConcept C154945302 @default.
- W1837278375 hasConcept C17212007 @default.
- W1837278375 hasConcept C199833920 @default.
- W1837278375 hasConcept C22648726 @default.
- W1837278375 hasConcept C33704608 @default.
- W1837278375 hasConcept C33923547 @default.
- W1837278375 hasConcept C41008148 @default.
- W1837278375 hasConcept C50644808 @default.
- W1837278375 hasConcept C73555534 @default.
- W1837278375 hasConcept C83665646 @default.
- W1837278375 hasConcept C92835128 @default.
- W1837278375 hasConcept C94641424 @default.
- W1837278375 hasConceptScore W1837278375C111168008 @default.
- W1837278375 hasConceptScore W1837278375C124101348 @default.
- W1837278375 hasConceptScore W1837278375C153180895 @default.
- W1837278375 hasConceptScore W1837278375C154945302 @default.
- W1837278375 hasConceptScore W1837278375C17212007 @default.
- W1837278375 hasConceptScore W1837278375C199833920 @default.
- W1837278375 hasConceptScore W1837278375C22648726 @default.
- W1837278375 hasConceptScore W1837278375C33704608 @default.
- W1837278375 hasConceptScore W1837278375C33923547 @default.
- W1837278375 hasConceptScore W1837278375C41008148 @default.
- W1837278375 hasConceptScore W1837278375C50644808 @default.
- W1837278375 hasConceptScore W1837278375C73555534 @default.
- W1837278375 hasConceptScore W1837278375C83665646 @default.
- W1837278375 hasConceptScore W1837278375C92835128 @default.
- W1837278375 hasConceptScore W1837278375C94641424 @default.
- W1837278375 hasLocation W18372783751 @default.
- W1837278375 hasOpenAccess W1837278375 @default.
- W1837278375 hasPrimaryLocation W18372783751 @default.
- W1837278375 hasRelatedWork W1529350020 @default.
- W1837278375 hasRelatedWork W179374575 @default.
- W1837278375 hasRelatedWork W1976056061 @default.
- W1837278375 hasRelatedWork W1991931515 @default.
- W1837278375 hasRelatedWork W2084131036 @default.
- W1837278375 hasRelatedWork W2092006378 @default.
- W1837278375 hasRelatedWork W2110536205 @default.
- W1837278375 hasRelatedWork W2125070513 @default.
- W1837278375 hasRelatedWork W2126035361 @default.
- W1837278375 hasRelatedWork W2139588028 @default.
- W1837278375 hasRelatedWork W2168919625 @default.
- W1837278375 hasRelatedWork W2182037563 @default.
- W1837278375 hasRelatedWork W21934019 @default.
- W1837278375 hasRelatedWork W2235637436 @default.
- W1837278375 hasRelatedWork W2263992973 @default.
- W1837278375 hasRelatedWork W23916676 @default.
- W1837278375 hasRelatedWork W2404230925 @default.
- W1837278375 hasRelatedWork W27762437 @default.
- W1837278375 hasRelatedWork W2808150224 @default.
- W1837278375 hasRelatedWork W2444586519 @default.
- W1837278375 isParatext "false" @default.
- W1837278375 isRetracted "false" @default.
- W1837278375 magId "1837278375" @default.
- W1837278375 workType "book-chapter" @default.