Matches in SemOpenAlex for { <https://semopenalex.org/work/W1837336043> ?p ?o ?g. }
- W1837336043 endingPage "654" @default.
- W1837336043 startingPage "651" @default.
- W1837336043 abstract "The first detailed report of airway structural changes in asthma was published over 75 years ago in the Archives of Internal Medicine by Huber and Koessler (1). In this report, the authors demonstrated that patients with fatal asthma had substantial thickening of the airway smoothmuscle layer. Half a century later, this early observation was confirmed by a number of investigators (2–9). Carroll and colleagues (10) found that in both fatal and nonfatal cases of asthma, the airway smooth-muscle area of the larger membranous bronchioles was significantly greater than in control cases, suggesting that increases in airway smooth-muscle mass are not exclusive to fatal asthma. Few studies have examined the local mechanism of muscular thickening (i.e., hyperplasia versus hypertrophy). Heard and Hossain (4) found a threefold increase in cell number in the bronchi of asthmatic patients, suggesting that smooth-muscle hyperplasia is present in the airways of patients with fatal asthma. Although the realization that objects must be counted directly in three-dimensional space to obtain unbiased estimates cast doubt on the validity of this early work (11), Ebina and colleagues (9) examined the airways of patients with fatal asthma using a combination of the dissector method with a serial sectioning technique. Two subgroups of asthmatic airways were found: in Type I, smooth-muscle hyperplasia was responsible for central airway smooth-muscle thickening, whereas in Type II, cellular hypertrophy was evident over the entire length of the airway. Finally, excess airway smooth-muscle DNA synthesis has been demonstrated in two animal models of airways disease, hyperoxic exposure, and antigen challenge (12–14). The above data, which strongly suggest that excessive smooth-muscle proliferation is present in the airways of patients with asthma, highlight the need for a precise understanding of the events involved in airway smooth-muscle mitogenesis. To that end, numerous investigators have developed cell culture systems adopting tracheal and bronchial myocytes from different species. A large number of smooth-muscle mitogens have been identified, some of which are species specific in their effect. For example, histamine is mitogenic for human airway smooth muscle (15, 16), but does not induce proliferation in bovine cells (17). Nevertheless, a growing body of literature suggests that common signal transduction pathways regulate airway smooth-muscle cell cycle entry across species lines. Indeed, the signaling pathways regulating airway smoothmuscle proliferation may not be substantially different from those regulating the growth of other mesenchymal cells such as fibroblasts. Perhaps this is to be expected, as many aspects of mitogen-activated protein kinase (MAPK) cascades, guanine triphosphatase (GTPase) signaling pathways, and cell-cycle regulation are highly conserved in eukaryotic species, including mammals, Drosophila , nematodes, and yeast (18–24). A major signal transduction pathway activated by growth factors is the extracellular signal-regulated kinase (ERK) pathway. ERKs (p44 ERK1 and p42 ERK2 ) are cytosolic serine/threonine kinases of the MAPK superfamily. ERKs participate in the transduction of growth and differentiation-promoting signals to the nucleus. Studies in airway smooth-muscle cells using selective overexpression of either dominant-negative or constitutively active forms of Ras, Raf-1, and MAPK/ERK kinase-1 (MEK1) suggest that, as in other mesenchymal cells, these signaling intermediates constitute the major route toward ERK activation (25–27). These data, combined with additional studies using selective chemical inhibitors of MEK1 (27–30), suggest that signaling through the ERK pathway is required for the airway smooth-muscle cell cycle progression. However, activation of ERK and expression of cyclin D 1 , a downstream affector of ERK signaling (31), may not be sufficient for cell-cycle entry. In NIH3T3 cells, constitutive activation of MEK1, although sufficient to induce cyclin D 1 protein accumulation, is insufficient for maximal phosphorylation of retinoblastoma protein, degradation of the cyclin-dependent kinase inhibitor p27, and cyclin A expression—additional key events required for the G 1 -toS-phase transition (32). Moreover, in IIC9 fibroblasts, Ras, but not ERK, is required for growth-factor–induced degradation of p27 (33). Together, these data suggest that Ras coordinates cell-cycle progression by regulating signaling through both ERK-dependent and -independent signaling pathways. In this month’s issue of the Journal , Ammit and colleagues examined the requirement of Ras isoforms for human airway smooth-muscle DNA synthesis (34). Microin( Received in original form August 12, 1999 )" @default.
- W1837336043 created "2016-06-24" @default.
- W1837336043 creator A5027613904 @default.
- W1837336043 creator A5032119947 @default.
- W1837336043 date "1999-12-01" @default.
- W1837336043 modified "2023-09-27" @default.
- W1837336043 title "Mitogen-Activated Signaling in Airway Smooth Muscle" @default.
- W1837336043 cites W1487106955 @default.
- W1837336043 cites W1503043210 @default.
- W1837336043 cites W1555692789 @default.
- W1837336043 cites W1585517331 @default.
- W1837336043 cites W1897928961 @default.
- W1837336043 cites W1911507086 @default.
- W1837336043 cites W1964146094 @default.
- W1837336043 cites W1967218150 @default.
- W1837336043 cites W1968606500 @default.
- W1837336043 cites W1968697776 @default.
- W1837336043 cites W1975886237 @default.
- W1837336043 cites W1985462906 @default.
- W1837336043 cites W1991714532 @default.
- W1837336043 cites W1995869327 @default.
- W1837336043 cites W1997784032 @default.
- W1837336043 cites W2000862518 @default.
- W1837336043 cites W2002410732 @default.
- W1837336043 cites W2009394026 @default.
- W1837336043 cites W2021883819 @default.
- W1837336043 cites W2026578973 @default.
- W1837336043 cites W2033950216 @default.
- W1837336043 cites W2041024018 @default.
- W1837336043 cites W2041926656 @default.
- W1837336043 cites W2042027156 @default.
- W1837336043 cites W2046610634 @default.
- W1837336043 cites W2047184080 @default.
- W1837336043 cites W2049216745 @default.
- W1837336043 cites W2056175836 @default.
- W1837336043 cites W2060416249 @default.
- W1837336043 cites W2066689232 @default.
- W1837336043 cites W2072243374 @default.
- W1837336043 cites W2072974313 @default.
- W1837336043 cites W2077309295 @default.
- W1837336043 cites W2079123009 @default.
- W1837336043 cites W2087172814 @default.
- W1837336043 cites W2095152292 @default.
- W1837336043 cites W2095798417 @default.
- W1837336043 cites W2098560206 @default.
- W1837336043 cites W2106875648 @default.
- W1837336043 cites W2110817651 @default.
- W1837336043 cites W2121582695 @default.
- W1837336043 cites W2122089995 @default.
- W1837336043 cites W2127150495 @default.
- W1837336043 cites W2134468110 @default.
- W1837336043 cites W2139582633 @default.
- W1837336043 cites W2143238483 @default.
- W1837336043 cites W2160560563 @default.
- W1837336043 cites W2165981929 @default.
- W1837336043 cites W2168176836 @default.
- W1837336043 cites W2183221588 @default.
- W1837336043 cites W2232764299 @default.
- W1837336043 cites W2255988667 @default.
- W1837336043 cites W2273648405 @default.
- W1837336043 cites W2338971154 @default.
- W1837336043 cites W2417576874 @default.
- W1837336043 cites W4255660154 @default.
- W1837336043 doi "https://doi.org/10.1165/ajrcmb.21.6.f168" @default.
- W1837336043 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/10572060" @default.
- W1837336043 hasPublicationYear "1999" @default.
- W1837336043 type Work @default.
- W1837336043 sameAs 1837336043 @default.
- W1837336043 citedByCount "10" @default.
- W1837336043 countsByYear W18373360432012 @default.
- W1837336043 countsByYear W18373360432019 @default.
- W1837336043 countsByYear W18373360432022 @default.
- W1837336043 countsByYear W18373360432023 @default.
- W1837336043 crossrefType "journal-article" @default.
- W1837336043 hasAuthorship W1837336043A5027613904 @default.
- W1837336043 hasAuthorship W1837336043A5032119947 @default.
- W1837336043 hasConcept C105922876 @default.
- W1837336043 hasConcept C126322002 @default.
- W1837336043 hasConcept C132149769 @default.
- W1837336043 hasConcept C42219234 @default.
- W1837336043 hasConcept C57074206 @default.
- W1837336043 hasConcept C62478195 @default.
- W1837336043 hasConcept C71924100 @default.
- W1837336043 hasConcept C86803240 @default.
- W1837336043 hasConcept C95444343 @default.
- W1837336043 hasConceptScore W1837336043C105922876 @default.
- W1837336043 hasConceptScore W1837336043C126322002 @default.
- W1837336043 hasConceptScore W1837336043C132149769 @default.
- W1837336043 hasConceptScore W1837336043C42219234 @default.
- W1837336043 hasConceptScore W1837336043C57074206 @default.
- W1837336043 hasConceptScore W1837336043C62478195 @default.
- W1837336043 hasConceptScore W1837336043C71924100 @default.
- W1837336043 hasConceptScore W1837336043C86803240 @default.
- W1837336043 hasConceptScore W1837336043C95444343 @default.
- W1837336043 hasIssue "6" @default.
- W1837336043 hasLocation W18373360431 @default.
- W1837336043 hasLocation W18373360432 @default.
- W1837336043 hasOpenAccess W1837336043 @default.