Matches in SemOpenAlex for { <https://semopenalex.org/work/W1837652160> ?p ?o ?g. }
- W1837652160 abstract "Cellular processes are controlled by gene-regulatory networks. Several computational methods are currently used to learn the structure of gene-regulatory networks from data. This study focusses on time series gene expression and gene knock-out data in order to identify the underlying network structure. We compare the performance of different network reconstruction methods using synthetic data generated from an ensemble of reference networks. Data requirements as well as optimal experiments for the reconstruction of gene-regulatory networks are investigated. Additionally, the impact of prior knowledge on network reconstruction as well as the effect of unobserved cellular processes is studied.We identify linear Gaussian dynamic Bayesian networks and variable selection based on F-statistics as suitable methods for the reconstruction of gene-regulatory networks from time series data. Commonly used discrete dynamic Bayesian networks perform inferior and this result can be attributed to the inevitable information loss by discretization of expression data. It is shown that short time series generated under transcription factor knock-out are optimal experiments in order to reveal the structure of gene regulatory networks. Relative to the level of observational noise, we give estimates for the required amount of gene expression data in order to accurately reconstruct gene-regulatory networks. The benefit of using of prior knowledge within a Bayesian learning framework is found to be limited to conditions of small gene expression data size. Unobserved processes, like protein-protein interactions, induce dependencies between gene expression levels similar to direct transcriptional regulation. We show that these dependencies cannot be distinguished from transcription factor mediated gene regulation on the basis of gene expression data alone.Currently available data size and data quality make the reconstruction of gene networks from gene expression data a challenge. In this study, we identify an optimal type of experiment, requirements on the gene expression data quality and size as well as appropriate reconstruction methods in order to reverse engineer gene regulatory networks from time series data." @default.
- W1837652160 created "2016-06-24" @default.
- W1837652160 creator A5021831793 @default.
- W1837652160 creator A5052831097 @default.
- W1837652160 creator A5071402164 @default.
- W1837652160 date "2007-02-02" @default.
- W1837652160 modified "2023-10-01" @default.
- W1837652160 title "Reconstructing gene-regulatory networks from time series, knock-out data, and prior knowledge" @default.
- W1837652160 cites W1481919380 @default.
- W1837652160 cites W1489119587 @default.
- W1837652160 cites W1753000577 @default.
- W1837652160 cites W1830407698 @default.
- W1837652160 cites W1989371635 @default.
- W1837652160 cites W2001431571 @default.
- W1837652160 cites W2009842679 @default.
- W1837652160 cites W2014575814 @default.
- W1837652160 cites W2019655981 @default.
- W1837652160 cites W2040482262 @default.
- W1837652160 cites W2053126761 @default.
- W1837652160 cites W2053455009 @default.
- W1837652160 cites W2061280979 @default.
- W1837652160 cites W2095622082 @default.
- W1837652160 cites W2103453943 @default.
- W1837652160 cites W2114565252 @default.
- W1837652160 cites W2117994680 @default.
- W1837652160 cites W2121150592 @default.
- W1837652160 cites W2121905499 @default.
- W1837652160 cites W2125508747 @default.
- W1837652160 cites W2125904845 @default.
- W1837652160 cites W2128506325 @default.
- W1837652160 cites W2133446381 @default.
- W1837652160 cites W2134092975 @default.
- W1837652160 cites W2139439234 @default.
- W1837652160 cites W2142460132 @default.
- W1837652160 cites W2150627960 @default.
- W1837652160 cites W2153208554 @default.
- W1837652160 cites W2153800196 @default.
- W1837652160 cites W2155205047 @default.
- W1837652160 cites W2157523980 @default.
- W1837652160 cites W2160064408 @default.
- W1837652160 cites W2161409973 @default.
- W1837652160 cites W2161511352 @default.
- W1837652160 cites W2161920970 @default.
- W1837652160 cites W2166106382 @default.
- W1837652160 cites W2167190345 @default.
- W1837652160 cites W2167244112 @default.
- W1837652160 cites W2611370172 @default.
- W1837652160 doi "https://doi.org/10.1186/1752-0509-1-11" @default.
- W1837652160 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/1839889" @default.
- W1837652160 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/17408501" @default.
- W1837652160 hasPublicationYear "2007" @default.
- W1837652160 type Work @default.
- W1837652160 sameAs 1837652160 @default.
- W1837652160 citedByCount "113" @default.
- W1837652160 countsByYear W18376521602012 @default.
- W1837652160 countsByYear W18376521602013 @default.
- W1837652160 countsByYear W18376521602014 @default.
- W1837652160 countsByYear W18376521602015 @default.
- W1837652160 countsByYear W18376521602016 @default.
- W1837652160 countsByYear W18376521602017 @default.
- W1837652160 countsByYear W18376521602018 @default.
- W1837652160 countsByYear W18376521602019 @default.
- W1837652160 countsByYear W18376521602020 @default.
- W1837652160 countsByYear W18376521602021 @default.
- W1837652160 countsByYear W18376521602022 @default.
- W1837652160 crossrefType "journal-article" @default.
- W1837652160 hasAuthorship W1837652160A5021831793 @default.
- W1837652160 hasAuthorship W1837652160A5052831097 @default.
- W1837652160 hasAuthorship W1837652160A5071402164 @default.
- W1837652160 hasBestOaLocation W18376521601 @default.
- W1837652160 hasConcept C104317684 @default.
- W1837652160 hasConcept C107673813 @default.
- W1837652160 hasConcept C119857082 @default.
- W1837652160 hasConcept C124101348 @default.
- W1837652160 hasConcept C150194340 @default.
- W1837652160 hasConcept C151406439 @default.
- W1837652160 hasConcept C152662350 @default.
- W1837652160 hasConcept C154945302 @default.
- W1837652160 hasConcept C165864922 @default.
- W1837652160 hasConcept C207201462 @default.
- W1837652160 hasConcept C33724603 @default.
- W1837652160 hasConcept C41008148 @default.
- W1837652160 hasConcept C54355233 @default.
- W1837652160 hasConcept C67339327 @default.
- W1837652160 hasConcept C70721500 @default.
- W1837652160 hasConcept C82142266 @default.
- W1837652160 hasConcept C86803240 @default.
- W1837652160 hasConceptScore W1837652160C104317684 @default.
- W1837652160 hasConceptScore W1837652160C107673813 @default.
- W1837652160 hasConceptScore W1837652160C119857082 @default.
- W1837652160 hasConceptScore W1837652160C124101348 @default.
- W1837652160 hasConceptScore W1837652160C150194340 @default.
- W1837652160 hasConceptScore W1837652160C151406439 @default.
- W1837652160 hasConceptScore W1837652160C152662350 @default.
- W1837652160 hasConceptScore W1837652160C154945302 @default.
- W1837652160 hasConceptScore W1837652160C165864922 @default.
- W1837652160 hasConceptScore W1837652160C207201462 @default.
- W1837652160 hasConceptScore W1837652160C33724603 @default.
- W1837652160 hasConceptScore W1837652160C41008148 @default.
- W1837652160 hasConceptScore W1837652160C54355233 @default.