Matches in SemOpenAlex for { <https://semopenalex.org/work/W1838129148> ?p ?o ?g. }
- W1838129148 endingPage "288" @default.
- W1838129148 startingPage "275" @default.
- W1838129148 abstract "Portable digital devices equipped with GPS antennas are ubiquitous sources of continuous information for location-based Expert and Intelligent Systems. The availability of these traces on the human mobility patterns is growing explosively. To mine this data is a fascinating challenge which can produce a big impact on both travelers and transit agencies. This paper proposes a novel incremental framework to maintain statistics on the urban mobility dynamics over a time-evolving origin-destination (O-D) matrix. The main motivation behind such task is to be able to learn from the location-based samples which are continuously being produced, independently on their source, dimensionality or (high) communicational rate. By doing so, the authors aimed to obtain a generalist framework capable of summarizing relevant context-aware information which is able to follow, as close as possible, the stochastic dynamics on the human mobility behavior. Its potential impact ranges Expert Systems for decision support across multiple industries, from demand estimation for public transportation planning till travel time prediction for intelligent routing systems, among others. The proposed methodology settles on three steps: (i) Half-Space trees are used to divide the city area into dense subregions of equal mass. The uncovered regions form an O-D matrix which can be updated by transforming the trees’leaves into conditional nodes (and vice-versa). The (ii) Partioning Incremental Algorithm is then employed to discretize the target variable’s historical values on each matrix cell. Finally, a (iii) dimensional hierarchy is defined to discretize the domains of the independent variables depending on the cell’s samples. A Taxi Network running on a mid-sized city in Portugal was selected as a case study. The Travel Time Estimation (TTE) problem was regarded as a real-world application. Experiments using one million data samples were conducted to validate the methodology. The results obtained highlight the straightforward contribution of this method: it is capable of resisting to the drift while still approximating context-aware solutions through a multidimensional discretization of the feature space. It is a step ahead in estimating the real-time mobility dynamics, regardless of its application field." @default.
- W1838129148 created "2016-06-24" @default.
- W1838129148 creator A5028638153 @default.
- W1838129148 creator A5057029393 @default.
- W1838129148 creator A5066290777 @default.
- W1838129148 creator A5068278843 @default.
- W1838129148 creator A5076893204 @default.
- W1838129148 date "2016-02-01" @default.
- W1838129148 modified "2023-10-16" @default.
- W1838129148 title "Time-evolving O-D matrix estimation using high-speed GPS data streams" @default.
- W1838129148 cites W1772240793 @default.
- W1838129148 cites W1979697018 @default.
- W1838129148 cites W1981039744 @default.
- W1838129148 cites W1984017078 @default.
- W1838129148 cites W1988314137 @default.
- W1838129148 cites W1988580225 @default.
- W1838129148 cites W1992341494 @default.
- W1838129148 cites W1995151908 @default.
- W1838129148 cites W1995315381 @default.
- W1838129148 cites W1996376467 @default.
- W1838129148 cites W1999692945 @default.
- W1838129148 cites W2003598689 @default.
- W1838129148 cites W2011832962 @default.
- W1838129148 cites W2020281294 @default.
- W1838129148 cites W2023703387 @default.
- W1838129148 cites W2026184121 @default.
- W1838129148 cites W2026524503 @default.
- W1838129148 cites W2033009234 @default.
- W1838129148 cites W2038921590 @default.
- W1838129148 cites W2039559615 @default.
- W1838129148 cites W2052474426 @default.
- W1838129148 cites W2055936398 @default.
- W1838129148 cites W2068770142 @default.
- W1838129148 cites W2076184482 @default.
- W1838129148 cites W2089277853 @default.
- W1838129148 cites W2104841477 @default.
- W1838129148 cites W2112980990 @default.
- W1838129148 cites W2140785063 @default.
- W1838129148 cites W2148343118 @default.
- W1838129148 cites W2165558283 @default.
- W1838129148 cites W2167291556 @default.
- W1838129148 cites W2167778199 @default.
- W1838129148 cites W2321707316 @default.
- W1838129148 cites W3099285884 @default.
- W1838129148 cites W4239510810 @default.
- W1838129148 doi "https://doi.org/10.1016/j.eswa.2015.08.048" @default.
- W1838129148 hasPublicationYear "2016" @default.
- W1838129148 type Work @default.
- W1838129148 sameAs 1838129148 @default.
- W1838129148 citedByCount "59" @default.
- W1838129148 countsByYear W18381291482016 @default.
- W1838129148 countsByYear W18381291482017 @default.
- W1838129148 countsByYear W18381291482018 @default.
- W1838129148 countsByYear W18381291482019 @default.
- W1838129148 countsByYear W18381291482020 @default.
- W1838129148 countsByYear W18381291482021 @default.
- W1838129148 countsByYear W18381291482022 @default.
- W1838129148 countsByYear W18381291482023 @default.
- W1838129148 crossrefType "journal-article" @default.
- W1838129148 hasAuthorship W1838129148A5028638153 @default.
- W1838129148 hasAuthorship W1838129148A5057029393 @default.
- W1838129148 hasAuthorship W1838129148A5066290777 @default.
- W1838129148 hasAuthorship W1838129148A5068278843 @default.
- W1838129148 hasAuthorship W1838129148A5076893204 @default.
- W1838129148 hasBestOaLocation W18381291482 @default.
- W1838129148 hasConcept C111030470 @default.
- W1838129148 hasConcept C113174947 @default.
- W1838129148 hasConcept C119857082 @default.
- W1838129148 hasConcept C124101348 @default.
- W1838129148 hasConcept C134306372 @default.
- W1838129148 hasConcept C162324750 @default.
- W1838129148 hasConcept C166957645 @default.
- W1838129148 hasConcept C187736073 @default.
- W1838129148 hasConcept C205649164 @default.
- W1838129148 hasConcept C2779343474 @default.
- W1838129148 hasConcept C2780451532 @default.
- W1838129148 hasConcept C33923547 @default.
- W1838129148 hasConcept C41008148 @default.
- W1838129148 hasConcept C60229501 @default.
- W1838129148 hasConcept C73000952 @default.
- W1838129148 hasConcept C76155785 @default.
- W1838129148 hasConceptScore W1838129148C111030470 @default.
- W1838129148 hasConceptScore W1838129148C113174947 @default.
- W1838129148 hasConceptScore W1838129148C119857082 @default.
- W1838129148 hasConceptScore W1838129148C124101348 @default.
- W1838129148 hasConceptScore W1838129148C134306372 @default.
- W1838129148 hasConceptScore W1838129148C162324750 @default.
- W1838129148 hasConceptScore W1838129148C166957645 @default.
- W1838129148 hasConceptScore W1838129148C187736073 @default.
- W1838129148 hasConceptScore W1838129148C205649164 @default.
- W1838129148 hasConceptScore W1838129148C2779343474 @default.
- W1838129148 hasConceptScore W1838129148C2780451532 @default.
- W1838129148 hasConceptScore W1838129148C33923547 @default.
- W1838129148 hasConceptScore W1838129148C41008148 @default.
- W1838129148 hasConceptScore W1838129148C60229501 @default.
- W1838129148 hasConceptScore W1838129148C73000952 @default.
- W1838129148 hasConceptScore W1838129148C76155785 @default.
- W1838129148 hasLocation W18381291481 @default.