Matches in SemOpenAlex for { <https://semopenalex.org/work/W1838186232> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W1838186232 abstract "We present a semi-automated supervised hyperspectral image segmentation algorithm based on the level set methodology. In the proposed procedure, seed pixels are automatically selected by their similarity to the training signatures, and speed functions that control the level set propagation are created based on pixel similarity to the seed signature and class discriminator functions. Two sub images from a remotely sensed HYDICE hyperspectral image of the Washington D.C. Mall area in the U.S.A. are used to validate the algorithm. The results of the proposed algorithm are compared to the results using well-known supervised parallepiped or maximum-likelihood classification methods provided in the ERDAS Imagine software suite. The classes are grass, trees, buildings, water, paths and shadows. The results show the efficacy of the new algorithm. The contributions of the paper include: (1) successful application of the level set segmentation methodology to hyperspectral images, and (2) specification of speed functions suitable for controlling the level set propagation." @default.
- W1838186232 created "2016-06-24" @default.
- W1838186232 creator A5063071222 @default.
- W1838186232 creator A5081134905 @default.
- W1838186232 date "2005-11-15" @default.
- W1838186232 modified "2023-09-25" @default.
- W1838186232 title "Level set segmentation of remotely sensed hyperspectral images" @default.
- W1838186232 cites W1482289351 @default.
- W1838186232 cites W1573854430 @default.
- W1838186232 cites W1604679511 @default.
- W1838186232 cites W168874853 @default.
- W1838186232 cites W1838005314 @default.
- W1838186232 cites W2005073772 @default.
- W1838186232 cites W2030699789 @default.
- W1838186232 cites W2108710270 @default.
- W1838186232 cites W2116299478 @default.
- W1838186232 cites W2118896555 @default.
- W1838186232 cites W2132402864 @default.
- W1838186232 cites W2133562032 @default.
- W1838186232 cites W2134930443 @default.
- W1838186232 cites W2161402422 @default.
- W1838186232 cites W2312997001 @default.
- W1838186232 cites W2478493250 @default.
- W1838186232 cites W2799061466 @default.
- W1838186232 cites W2998023265 @default.
- W1838186232 cites W628438000 @default.
- W1838186232 cites W639085525 @default.
- W1838186232 doi "https://doi.org/10.1109/igarss.2005.1526055" @default.
- W1838186232 hasPublicationYear "2005" @default.
- W1838186232 type Work @default.
- W1838186232 sameAs 1838186232 @default.
- W1838186232 citedByCount "22" @default.
- W1838186232 countsByYear W18381862322012 @default.
- W1838186232 countsByYear W18381862322013 @default.
- W1838186232 countsByYear W18381862322014 @default.
- W1838186232 countsByYear W18381862322018 @default.
- W1838186232 crossrefType "proceedings-article" @default.
- W1838186232 hasAuthorship W1838186232A5063071222 @default.
- W1838186232 hasAuthorship W1838186232A5081134905 @default.
- W1838186232 hasConcept C103278499 @default.
- W1838186232 hasConcept C115961682 @default.
- W1838186232 hasConcept C124504099 @default.
- W1838186232 hasConcept C153180895 @default.
- W1838186232 hasConcept C154945302 @default.
- W1838186232 hasConcept C159078339 @default.
- W1838186232 hasConcept C160633673 @default.
- W1838186232 hasConcept C177264268 @default.
- W1838186232 hasConcept C199360897 @default.
- W1838186232 hasConcept C2779803651 @default.
- W1838186232 hasConcept C31972630 @default.
- W1838186232 hasConcept C41008148 @default.
- W1838186232 hasConcept C76155785 @default.
- W1838186232 hasConcept C89600930 @default.
- W1838186232 hasConcept C94915269 @default.
- W1838186232 hasConceptScore W1838186232C103278499 @default.
- W1838186232 hasConceptScore W1838186232C115961682 @default.
- W1838186232 hasConceptScore W1838186232C124504099 @default.
- W1838186232 hasConceptScore W1838186232C153180895 @default.
- W1838186232 hasConceptScore W1838186232C154945302 @default.
- W1838186232 hasConceptScore W1838186232C159078339 @default.
- W1838186232 hasConceptScore W1838186232C160633673 @default.
- W1838186232 hasConceptScore W1838186232C177264268 @default.
- W1838186232 hasConceptScore W1838186232C199360897 @default.
- W1838186232 hasConceptScore W1838186232C2779803651 @default.
- W1838186232 hasConceptScore W1838186232C31972630 @default.
- W1838186232 hasConceptScore W1838186232C41008148 @default.
- W1838186232 hasConceptScore W1838186232C76155785 @default.
- W1838186232 hasConceptScore W1838186232C89600930 @default.
- W1838186232 hasConceptScore W1838186232C94915269 @default.
- W1838186232 hasLocation W18381862321 @default.
- W1838186232 hasOpenAccess W1838186232 @default.
- W1838186232 hasPrimaryLocation W18381862321 @default.
- W1838186232 hasRelatedWork W1871212985 @default.
- W1838186232 hasRelatedWork W1976502923 @default.
- W1838186232 hasRelatedWork W1991113069 @default.
- W1838186232 hasRelatedWork W2016777897 @default.
- W1838186232 hasRelatedWork W2103737328 @default.
- W1838186232 hasRelatedWork W2116040950 @default.
- W1838186232 hasRelatedWork W2118896555 @default.
- W1838186232 hasRelatedWork W2165734775 @default.
- W1838186232 hasRelatedWork W2342983257 @default.
- W1838186232 hasRelatedWork W2419170233 @default.
- W1838186232 hasRelatedWork W2766566703 @default.
- W1838186232 hasRelatedWork W2766886564 @default.
- W1838186232 hasRelatedWork W2901801949 @default.
- W1838186232 hasRelatedWork W2955662358 @default.
- W1838186232 hasRelatedWork W2995915487 @default.
- W1838186232 hasRelatedWork W3118043536 @default.
- W1838186232 hasRelatedWork W3197772649 @default.
- W1838186232 hasRelatedWork W628438000 @default.
- W1838186232 hasRelatedWork W2551597942 @default.
- W1838186232 hasRelatedWork W2958229148 @default.
- W1838186232 isParatext "false" @default.
- W1838186232 isRetracted "false" @default.
- W1838186232 magId "1838186232" @default.
- W1838186232 workType "article" @default.