Matches in SemOpenAlex for { <https://semopenalex.org/work/W1840376913> ?p ?o ?g. }
- W1840376913 endingPage "4298" @default.
- W1840376913 startingPage "4274" @default.
- W1840376913 abstract "The aim of this paper is to advocate the usefulness of the spin-density-functional (SDF) formalism. The generalization of the Hohenberg-Kohn-Sham scheme to and SDF formalism is presented in its thermodynamic version. The ground-state formalism is extended to more general Hamiltonians and to the lowest excited state of each symmetry. A relation between the exchange-correlation functional and the pair correlation function is derived. It is used for the interpretation of approximate versions of the theory, in particular the local-spin-density (LSD) approximation, which is formally valid only in the limit of slow and weak spatial variation in the density. It is shown, however, to give good account for the exchange-correlation energy also in rather inhomogeneous situations, because only the spherical average of the exchange-correlation hole influences this energy, and because it fulfills the sum rule stating that this hole should contain only one charge unit. A further advantage of the LSD approximation is that it can be systematically improved. Calculations on the homogeneous spin-polarized electron liquid are reported on. These calculations provide data in the form of interpolation formulas for the exchange-correlation energy and potentials, to be used in the LSD approximation. The ground-state properties are obtained from the Galitskii-Migdal formula, which relates the total energy to the one-electron spectrum, obtained with a dynamical self-energy. The self-energy is calculated in an electron-plasmon model where the electron is assumed to couple to one single mode. The potential for excited states is obtained by identifying the quasiparticle peak in the spectrum. Correlation is found to significantly weaken the spin dependence of the potentials, compared with the result in the Hartree-Fock approximation. Charge and spin response functions are calculated in the long-wavelength limit. Correlation is found to be very important for properties which involve a change in the spinpolarization. For atoms, molecules, and solids the usefulness of the SDF formalism is discussed. In order to explore the range of applicability, a few applications of the LSD approximation are made on systems for which accurate solutions exist. The calculated ionization potentials, affinities, and excitation energies for atoms propose that the valence electrons are fairly well described, a typical error in the ionization energy being 1/2 eV. The exchange-correlation holes of two-electron ions are discussed. An application to the hydrogen molecule, using a minimum basis set, shows that the LSD approximation gives good results for the energy curve for all separations studied, in contrast to the spin-independent local approximation. In particular, the error in the binding energy is only 0.1 eV, and bond breaking is properly described. For solids, the SDF formalism provides a framework for band models of magnetism. An estimate of the splitting between spin-up and spin-down energy bands of a ferromagnetic transition metal shows that the LSD approximation gives a correction of the correct sign and order of magnitude to published $Xensuremath{alpha}$ results. To stimulate further use of the SDF formalism in the LSD approximation, the paper is self-contained and describes the necessary formulas and input data for the potentials." @default.
- W1840376913 created "2016-06-24" @default.
- W1840376913 creator A5064642172 @default.
- W1840376913 creator A5082355890 @default.
- W1840376913 date "1976-05-15" @default.
- W1840376913 modified "2023-10-17" @default.
- W1840376913 title "Exchange and correlation in atoms, molecules, and solids by the spin-density-functional formalism" @default.
- W1840376913 cites W1154975637 @default.
- W1840376913 cites W1528623639 @default.
- W1840376913 cites W1699176673 @default.
- W1840376913 cites W1963724108 @default.
- W1840376913 cites W1966764909 @default.
- W1840376913 cites W1967349916 @default.
- W1840376913 cites W1967472649 @default.
- W1840376913 cites W1972068641 @default.
- W1840376913 cites W1972540241 @default.
- W1840376913 cites W1976598670 @default.
- W1840376913 cites W1980438315 @default.
- W1840376913 cites W1980750504 @default.
- W1840376913 cites W1981020641 @default.
- W1840376913 cites W1982090649 @default.
- W1840376913 cites W1986325919 @default.
- W1840376913 cites W1988134244 @default.
- W1840376913 cites W1989336284 @default.
- W1840376913 cites W1990669928 @default.
- W1840376913 cites W1993112241 @default.
- W1840376913 cites W1995345477 @default.
- W1840376913 cites W1995925063 @default.
- W1840376913 cites W1996837061 @default.
- W1840376913 cites W1997205928 @default.
- W1840376913 cites W1998399936 @default.
- W1840376913 cites W2001057778 @default.
- W1840376913 cites W2003817687 @default.
- W1840376913 cites W2006914625 @default.
- W1840376913 cites W2007833519 @default.
- W1840376913 cites W2008328693 @default.
- W1840376913 cites W2009867601 @default.
- W1840376913 cites W2010949779 @default.
- W1840376913 cites W2011327487 @default.
- W1840376913 cites W2014404986 @default.
- W1840376913 cites W2015241703 @default.
- W1840376913 cites W2016980290 @default.
- W1840376913 cites W2023263993 @default.
- W1840376913 cites W2024490952 @default.
- W1840376913 cites W2025899426 @default.
- W1840376913 cites W2026902192 @default.
- W1840376913 cites W2030771194 @default.
- W1840376913 cites W2030976617 @default.
- W1840376913 cites W2031130806 @default.
- W1840376913 cites W2035000332 @default.
- W1840376913 cites W2035028578 @default.
- W1840376913 cites W2035096574 @default.
- W1840376913 cites W2036008032 @default.
- W1840376913 cites W2036215724 @default.
- W1840376913 cites W2036694888 @default.
- W1840376913 cites W2038303455 @default.
- W1840376913 cites W2038975686 @default.
- W1840376913 cites W2039897588 @default.
- W1840376913 cites W2041915097 @default.
- W1840376913 cites W2042495317 @default.
- W1840376913 cites W2044240073 @default.
- W1840376913 cites W2044720529 @default.
- W1840376913 cites W2049178632 @default.
- W1840376913 cites W2049558754 @default.
- W1840376913 cites W2049635189 @default.
- W1840376913 cites W2050729144 @default.
- W1840376913 cites W2052704979 @default.
- W1840376913 cites W2055230539 @default.
- W1840376913 cites W2057802436 @default.
- W1840376913 cites W2061406549 @default.
- W1840376913 cites W2062656402 @default.
- W1840376913 cites W2062876551 @default.
- W1840376913 cites W2063041869 @default.
- W1840376913 cites W2063304926 @default.
- W1840376913 cites W2064760678 @default.
- W1840376913 cites W2066361922 @default.
- W1840376913 cites W2068340227 @default.
- W1840376913 cites W2068613895 @default.
- W1840376913 cites W2069026416 @default.
- W1840376913 cites W2070045737 @default.
- W1840376913 cites W2071411122 @default.
- W1840376913 cites W2071827078 @default.
- W1840376913 cites W2076873733 @default.
- W1840376913 cites W2077265534 @default.
- W1840376913 cites W2077394341 @default.
- W1840376913 cites W2080476863 @default.
- W1840376913 cites W2083028551 @default.
- W1840376913 cites W2087555968 @default.
- W1840376913 cites W2089419485 @default.
- W1840376913 cites W2093023472 @default.
- W1840376913 cites W2093801959 @default.
- W1840376913 cites W2103547973 @default.
- W1840376913 cites W2127264975 @default.
- W1840376913 cites W2134344701 @default.
- W1840376913 cites W2151133474 @default.
- W1840376913 cites W2151752974 @default.
- W1840376913 cites W2161694705 @default.
- W1840376913 cites W2224431030 @default.